000154633 001__ 154633
000154633 005__ 20210129213930.0
000154633 0247_ $$2doi$$a10.1111/ppl.12226
000154633 0247_ $$2ISSN$$a0031-9317
000154633 0247_ $$2ISSN$$a1399-3054
000154633 0247_ $$2WOS$$aWOS:000345503100013
000154633 037__ $$aFZJ-2014-03923
000154633 041__ $$aEnglish
000154633 082__ $$a580
000154633 1001_ $$0P:(DE-Juel1)161185$$aMuller, Onno$$b0
000154633 245__ $$aLeaf architectural, vascular and photosynthetic acclimation to temperature in two biennials
000154633 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2014
000154633 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417011886_3050
000154633 3367_ $$2DataCite$$aOutput Types/Journal article
000154633 3367_ $$00$$2EndNote$$aJournal Article
000154633 3367_ $$2BibTeX$$aARTICLE
000154633 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154633 3367_ $$2DRIVER$$aarticle
000154633 520__ $$aAcclimation of leaf features to growth temperature was investigated in two biennials (whose life cycle spans summer and winter seasons) using different mechanisms of sugar loading into exporting conduits, Verbascum phoeniceum (employs sugar-synthesizing enzymes driving symplastic loading through plasmodesmatal wall pores of phloem cells) and Malva neglecta (likely apoplastic loader transporting sugar via membrane transport proteins of phloem cells). In both species, acclimation to lower temperature involved greater maximal photosynthesis rates and vein density per leaf area in close correlation with modification of minor vein cellular features. While the symplastically loading biennial exhibited adjustments in the size of minor leaf vein cells (consistent with adjustment of the level of sugar-synthesizing enzymes), the putative apoplastic biennial exhibited adjustments in the number of cells (consistent with adjustment of cell membrane area for transporter placement). This upregulation of morphological and anatomical features at lower growth temperature likely contributes to the success of both the species during the winter. Furthermore, while acclimation to low temperature involved greater leaf mass per area in both species, this resulted from greater leaf thickness in V. phoeniceum vs a greater number of mesophyll cells per leaf area in M. neglecta. Both types of adjustments presumably accommodate more chloroplasts per leaf area contributing to photosynthesis. Both biennials exhibited high foliar vein densities (particularly the solar-tracking M. neglecta), which should aid both sugar export from and delivery of water to the leaves.
000154633 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x0
000154633 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154633 7001_ $$0P:(DE-HGF)0$$aStewart, Jared J.$$b1
000154633 7001_ $$0P:(DE-HGF)0$$aCohu, Christopher M.$$b2
000154633 7001_ $$0P:(DE-HGF)0$$aPolutchko, Stephanie K.$$b3
000154633 7001_ $$0P:(DE-HGF)0$$aDemmig-Adams, Barbara$$b4
000154633 7001_ $$0P:(DE-HGF)0$$aAdams, William W.$$b5$$eCorresponding Author
000154633 773__ $$0PERI:(DE-600)2020837-6$$a10.1111/ppl.12226$$gp. n/a - n/a$$n4$$p763–772$$tPhysiologia plantarum$$v152$$x0031-9317$$y2014
000154633 8564_ $$uhttps://juser.fz-juelich.de/record/154633/files/FZJ-2014-03923.pdf$$yRestricted
000154633 909CO $$ooai:juser.fz-juelich.de:154633$$pVDB
000154633 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161185$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154633 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vKey Technologies for the Bioeconomy$$x0
000154633 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF2-89582$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x0
000154633 9141_ $$y2014
000154633 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154633 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154633 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154633 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154633 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154633 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154633 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154633 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154633 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000154633 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154633 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000154633 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000154633 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000154633 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000154633 980__ $$ajournal
000154633 980__ $$aVDB
000154633 980__ $$aI:(DE-Juel1)IBG-2-20101118
000154633 980__ $$aUNRESTRICTED