000154732 001__ 154732
000154732 005__ 20220930130030.0
000154732 0247_ $$2doi$$a10.2136/vzj2014.01.0005
000154732 0247_ $$2WOS$$aWOS:000343161800006
000154732 037__ $$aFZJ-2014-04012
000154732 082__ $$a550
000154732 1001_ $$0P:(DE-Juel1)156558$$aGottselig, Nina$$b0$$eCorresponding Author$$ufzj
000154732 245__ $$aDistribution of Phosphorus-Containing Fine Colloids and Nanoparticles in Stream Water of a Forest Catchment
000154732 260__ $$aMadison, Wis.$$bSSSA$$c2014
000154732 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1408015297_32476
000154732 3367_ $$2DataCite$$aOutput Types/Journal article
000154732 3367_ $$00$$2EndNote$$aJournal Article
000154732 3367_ $$2BibTeX$$aARTICLE
000154732 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154732 3367_ $$2DRIVER$$aarticle
000154732 520__ $$aNatural fine colloids and nanoparticles have the potential to encapsulate and bind nutrients. Their size and composition is therefore relevant to understand the transport of essential nutrients like phosphorus in an aquatic ecosystem. The aim of this study was to characterize fine colloidal and nanoparticulate bound P of distinct hydromorphological areas in stream water from a forested test site in a small headwater catchment. Asymmetric flow field flow fractionation coupled online to inductively coupled plasma mass spectrometry was applied for size-resolved detection of P, Fe, and Al in the fractions. Online P detection was a challenge due to the low concentrations (in this study down to 0.1 μg/L) in many natural waters. Additionally, the “dissolved” organic matter (DOM) content was derived from the online UV signal. The colloidal P occurred in two size fractions (2–20 and 21–300 nm), which constituted up to 100% of the total river P discharge depending on hydromorphology. For the small size fraction, variations in P concentrations correlated with Al variations; in addition, a high Fe presence in both fractions was accompanied by high P concentrations. Moreover, DOM was detected with P in the presence of Fe and Al, suggesting that Fe and Al are carriers of P and associated with organic matter. The developed methodology enables the inputs and source regions of fine colloidal and nanoparticulate fractions within a small river of a headwater catchment to be traced and conceptually defined for the first time.
000154732 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000154732 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000154732 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154732 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b1$$ufzj
000154732 7001_ $$0P:(DE-Juel1)157638$$aNischwitz, Volker$$b2$$ufzj
000154732 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000154732 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b4$$ufzj
000154732 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b5$$ufzj
000154732 770__ $$aDissolved Organic Matter: Linking Soils and Aquatic Systems
000154732 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2014.01.0005$$gVol. 13, no. 7, p. 0 -$$n7$$p1 - 11$$tVadose zone journal$$v13$$x1539-1663$$y2014
000154732 8564_ $$uhttps://juser.fz-juelich.de/record/154732/files/FZJ-2014-04012.pdf$$yRestricted
000154732 8767_ $$92014-06-12$$d2014-06-17$$ePage charges$$jZahlung erfolgt$$zUSD 800,-
000154732 909CO $$ooai:juser.fz-juelich.de:154732$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000154732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156558$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157638$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000154732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000154732 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000154732 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000154732 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000154732 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000154732 9141_ $$y2014
000154732 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154732 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154732 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154732 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154732 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154732 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154732 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154732 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000154732 920__ $$lyes
000154732 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000154732 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x1
000154732 980__ $$ajournal
000154732 980__ $$aVDB
000154732 980__ $$aI:(DE-Juel1)IBG-3-20101118
000154732 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000154732 980__ $$aUNRESTRICTED
000154732 980__ $$aAPC
000154732 981__ $$aI:(DE-Juel1)ZEA-3-20090406