001     154739
005     20210129213940.0
037 _ _ |a FZJ-2014-04019
100 1 _ |a Gottselig, Nina
|0 P:(DE-Juel1)156558
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a International Workshop InterNano, Nanoparticles in Soils and Waters: Fate, Transport and Effects
|c Landau in der Pfalz
|d 2014-03-11 - 2014-03-13
|w Germany
245 _ _ |a Fine colloidal and nanoparticulate P, Fe, Al and C distribution in stream water of a German mountainous forest catchment
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1408015355_32487
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a Natural fine colloids and nanoparticles have the potential to encapsulate and bind nutrients. Their size range and composition is therefore relevant to understand the transport of essential nutrients like phosphorus in an aquatic ecosystem. The aim of the study was to characterize fine colloidal and nanoparticulate bound phosphorus of distinct hydromorphological areas in stream water from a forested experimental test site in a small headwater catchment. Asymmetric Flow Field Flow Fractionation (AF4) is a frequently used method when aiming at a separation and characterization of colloids in aquatic systems. It combines a large separation range (about 1 nm to 1 µm) with the possibility to couple various detection devices online. The separation is performed without a stationary phase in an open channel which is subject to a force acting perpendicular to the solvent flow and thus driving the fractionation. The fractionation occurs on behalf of diameter and diffusion rate of the particles. AF4 coupled online to ICP-MS was applied for size resolved detection of phosphorus (P), iron (Fe), and aluminum (Al) in the fractions. Special focus was on P detection which is present at low concentrations (few µg/L) in many natural waters. Two distinct fractions (mean d~8 nm and ~150 nm) were detected and characterized. For the small size fraction, variations in P concentrations strongly correlated to the course of Al variations; in addition, high Fe presence in both fractions was accompanied by high P concentrations. The developed methodology enables for the first time to trace and conceptually define the inputs and source regions of fine colloidal and nanoparticulate fractions within a small river of a headwater catchment.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 1
|u fzj
700 1 _ |a Nischwitz, Volker
|0 P:(DE-Juel1)157638
|b 2
|u fzj
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 4
|u fzj
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:154739
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156558
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145865
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157638
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129484
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21