TY - JOUR
AU - Hong, Liang
AU - Sharp, Melissa 
AU - Poblete, Simón
AU - Biehl, Ralf
AU - Zamponi, Michaela
AU - Szekely, Noemi
AU - Appavou, Marie-Sousai
AU - Winkler, Roland G.
AU - Nauss, Rachel E.
AU - Johs, Alexander
AU - Parks, Jerry 
AU - Yi, Zheng
AU - Cheng, Xiaolin
AU - Liang, Liyuan
AU - Ohl, Michael
AU - Miller, Susan 
AU - Richter, Dieter
AU - Gompper, Gerhard
AU - Smith, Jeremy 
TI - Structure and Dynamics of a Compact State of a Multidomain Protein, the Mercuric Ion Reductase
JO - Biophysical journal
VL - 107
IS - 2
SN - 0006-3495
CY - New York, NY
PB - Rockefeller Univ. Press
M1 - FZJ-2014-04030
SP - 393 - 400
PY - 2014
AB - The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed.
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000339148500015
C6 - pmid:25028881
DO - DOI:10.1016/j.bpj.2014.06.013
UR - https://juser.fz-juelich.de/record/154750
ER -