000154804 001__ 154804
000154804 005__ 20240712084518.0
000154804 0247_ $$2doi$$a10.1139/cjp-2013-0585
000154804 0247_ $$2ISSN$$a1208-6045
000154804 0247_ $$2ISSN$$a0008-4204
000154804 0247_ $$2WOS$$aWOS:000339379500073
000154804 0247_ $$2altmetric$$aaltmetric:2342134
000154804 037__ $$aFZJ-2014-04072
000154804 082__ $$a530
000154804 1001_ $$0P:(DE-Juel1)130219$$aBittkau, K.$$b0$$eCorresponding Author$$ufzj
000154804 245__ $$aImprovement of light trapping in thin-film silicon solar cells by combining periodic and random interfaces
000154804 260__ $$aOttawa, Ontario$$bNCR Research Press$$c2014
000154804 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407158270_24843
000154804 3367_ $$2DataCite$$aOutput Types/Journal article
000154804 3367_ $$00$$2EndNote$$aJournal Article
000154804 3367_ $$2BibTeX$$aARTICLE
000154804 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154804 3367_ $$2DRIVER$$aarticle
000154804 520__ $$aThe concept of photonic random textures for application as a light-trapping scheme in thin-film solar cells is introduced. Those textures consist of a randomly textured interface, as commonly applied in thin-film solar cells, which is superimposed with a two-dimensional grating structure. The light-scattering properties of those textures are investigated by scalar scattering theory for transmission into the absorber layer and reflection at the back contact. A quantity to describe the light-trapping efficiency is derived and verified by rigorous diffraction theory. The photonic random textures outperform the random textures and the grating structures significantly.
000154804 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000154804 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154804 7001_ $$0P:(DE-Juel1)145479$$aHoffmann, A.$$b1$$ufzj
000154804 7001_ $$0P:(DE-Juel1)130225$$aCarius, R.$$b2$$ufzj
000154804 773__ $$0PERI:(DE-600)2021497-2$$a10.1139/cjp-2013-0585$$gVol. 92, no. 7/8, p. 888 - 891$$n7/8$$p888 - 891$$tCanadian journal of physics$$v92$$x1208-6045$$y2014
000154804 8564_ $$uhttps://juser.fz-juelich.de/record/154804/files/FZJ-2014-04072.pdf$$yRestricted
000154804 909CO $$ooai:juser.fz-juelich.de:154804$$pVDB
000154804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145479$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154804 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154804 9132_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000154804 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000154804 9141_ $$y2014
000154804 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000154804 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154804 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154804 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154804 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154804 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154804 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154804 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154804 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000154804 920__ $$lyes
000154804 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000154804 980__ $$ajournal
000154804 980__ $$aVDB
000154804 980__ $$aI:(DE-Juel1)IEK-5-20101013
000154804 980__ $$aUNRESTRICTED
000154804 981__ $$aI:(DE-Juel1)IMD-3-20101013