000154809 001__ 154809
000154809 005__ 20240712084518.0
000154809 0247_ $$2doi$$a10.1364/OE.22.0A1270
000154809 0247_ $$2WOS$$aWOS:000340717300007
000154809 037__ $$aFZJ-2014-04077
000154809 082__ $$a530
000154809 1001_ $$0P:(DE-Juel1)145479$$aHoffmann, Andre$$b0$$eCorresponding Author$$ufzj
000154809 245__ $$aAdvancing tandem solar cells by spectrally selective multilayer intermediate reflectors
000154809 260__ $$aWashington, DC$$bSoc.$$c2014
000154809 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407158552_24840
000154809 3367_ $$2DataCite$$aOutput Types/Journal article
000154809 3367_ $$00$$2EndNote$$aJournal Article
000154809 3367_ $$2BibTeX$$aARTICLE
000154809 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154809 3367_ $$2DRIVER$$aarticle
000154809 520__ $$aThin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell. In this paper, we design and prototype multilayer intermediate reflectors based on aluminum doped zinc oxide and doped microcrystalline silicon oxide with a spectrally selective reflectance allowing for improved current matching and an overall increase of the charge carrier generation. The intermediate reflectors are successfully integrated into state-of-the-art tandem solar cells resulting in an increase of overall short-circuit current density by 0.7 mA/cm² in comparison to a tandem solar cell with the standard single-layer intermediate reflector.
000154809 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000154809 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000154809 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154809 7001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich W.$$b1$$ufzj
000154809 7001_ $$0P:(DE-Juel1)136680$$aZhang, Chao$$b2$$ufzj
000154809 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b3$$ufzj
000154809 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b4$$ufzj
000154809 7001_ $$0P:(DE-Juel1)130300$$aUlbrich, Carolin$$b5$$ufzj
000154809 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b6$$ufzj
000154809 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b7$$ufzj
000154809 773__ $$0PERI:(DE-600)1491859-6$$a10.1364/OE.22.0A1270$$gVol. 22, no. S5, p. A1270 -$$nS5$$pA1270$$tOptics express$$v22$$x1094-4087$$y2014
000154809 8564_ $$uhttps://juser.fz-juelich.de/record/154809/files/FZJ-2014-04077.pdf$$yRestricted
000154809 8767_ $$92014-05-05$$d2014-07-10$$eAPC$$jZahlung erfolgt$$zUSD 1884,-
000154809 909CO $$ooai:juser.fz-juelich.de:154809$$popenCost$$pOpenAPC$$pVDB
000154809 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154809 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154809 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154809 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154809 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154809 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154809 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154809 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154809 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000154809 9141_ $$y2014
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145479$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136680$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130300$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000154809 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000154809 9132_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000154809 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000154809 920__ $$lyes
000154809 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000154809 980__ $$ajournal
000154809 980__ $$aVDB
000154809 980__ $$aI:(DE-Juel1)IEK-5-20101013
000154809 980__ $$aUNRESTRICTED
000154809 980__ $$aAPC
000154809 981__ $$aI:(DE-Juel1)IMD-3-20101013