001     154809
005     20240712084518.0
024 7 _ |2 doi
|a 10.1364/OE.22.0A1270
024 7 _ |2 WOS
|a WOS:000340717300007
037 _ _ |a FZJ-2014-04077
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)145479
|a Hoffmann, Andre
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Advancing tandem solar cells by spectrally selective multilayer intermediate reflectors
260 _ _ |a Washington, DC
|b Soc.
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1407158552_24840
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Thin-film silicon tandem solar cells are composed of an amorphous silicon top cell and a microcrystalline silicon bottom cell, stacked and connected in series. In order to match the photocurrents of the top cell and the bottom cell, a proper photon management is required. Up to date, single-layer intermediate reflectors of limited spectral selectivity are applied to match the photocurrents of the top and the bottom cell. In this paper, we design and prototype multilayer intermediate reflectors based on aluminum doped zinc oxide and doped microcrystalline silicon oxide with a spectrally selective reflectance allowing for improved current matching and an overall increase of the charge carrier generation. The intermediate reflectors are successfully integrated into state-of-the-art tandem solar cells resulting in an increase of overall short-circuit current density by 0.7 mA/cm² in comparison to a tandem solar cell with the standard single-layer intermediate reflector.
536 _ _ |0 G:(DE-HGF)POF2-111
|a 111 - Thin Film Photovoltaics (POF2-111)
|c POF2-111
|f POF II
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)130282
|a Paetzold, Ulrich W.
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)136680
|a Zhang, Chao
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)130268
|a Merdzhanova, Tsvetelina
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130263
|a Lambertz, Andreas
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)130300
|a Ulbrich, Carolin
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)130219
|a Bittkau, Karsten
|b 6
|u fzj
700 1 _ |0 P:(DE-Juel1)143905
|a Rau, Uwe
|b 7
|u fzj
773 _ _ |0 PERI:(DE-600)1491859-6
|a 10.1364/OE.22.0A1270
|g Vol. 22, no. S5, p. A1270 -
|n S5
|p A1270
|t Optics express
|v 22
|x 1094-4087
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/154809/files/FZJ-2014-04077.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:154809
|p VDB
|p OpenAPC
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145479
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130282
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)136680
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130268
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130263
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130300
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130219
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143905
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|v Solar cells of the next generation
|x 0
913 1 _ |0 G:(DE-HGF)POF2-111
|1 G:(DE-HGF)POF2-110
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Erneuerbare Energien
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21