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Abstract
We introduce a novel device for the mapping of redox-active compounds at high spatial resolution based on a crossbar electrode

architecture. The sensor array is formed by two sets of 16 parallel band electrodes that are arranged perpendicular to each other on

the wafer surface. At each intersection, the crossing bars are separated by a ca. 65 nm high nanocavity, which is stabilized by the

surrounding passivation layer. During operation, perpendicular bar electrodes are biased to potentials above and below the redox

potential of species under investigation, thus, enabling repeated subsequent reactions at the two electrodes. By this means, a redox

cycling current is formed across the gap that can be measured externally. As the nanocavity devices feature a very high current

amplification in redox cycling mode, individual sensing spots can be addressed in parallel, enabling high-throughput electrochem-

ical imaging. This paper introduces the design of the device, discusses the fabrication process and demonstrates its capabilities in

sequential and parallel data acquisition mode by using a hexacyanoferrate probe.
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Introduction
Redox cycling represents a powerful method for the detection

of analytes that can participate in repeated redox reactions [1-8].

Sensors typically use two electrodes that are located in close

proximity to each other and can be biased individually. During

operation one electrode is set to a potential above the redox

potential E0 of the analyte under investigation, while the other

electrode is set below this potential. Molecules can repeatedly

participate in subsequent redox reactions at the electrodes,

hence forming a current across the gap. This current can then be

measured externally and allows one to draw conclusions
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regarding a variety of analytes or reaction characteristics such

as the electrode kinetics or the analyte concentration.

A distinct advantage of this technique over conventional

amperometry, using a single working electrode, is given by the

increased Faradaic current caused by the redox cycling effect. A

single molecule entering the sensor does not only contribute

with an individual charge transfer to the Faradaic current but

participates in multiple reactions that each result in a charge

transfer to the working electrode. Sensitivity differs among

sensor designs and is mainly determined by the collection effi-

ciency of the sensor and the average time a molecule requires

for passing one redox cycle. In recent years, a variety of on-chip

redox cycling devices has been implemented. Hereby, the

highest sensitivity per electrode area was reported for nanoflu-

idic redox cycling sensors. These sensors feature micron-sized

electrodes that are arranged in parallel to each other and the

wafer surface, being separated by a nano-scaled gap [9-11]. The

current per molecule obtained with such a sensor featuring the

inter electrode distance h is directly proportional to h−2. There-

fore, small inter-electrode distances can significantly amplify

the electrochemical signal [12,13]. Amplification factors can be

calculated via comparison to a single electrode of the same size

and may reach several orders of magnitudes, allowing very low

detection limits; Recently, Lemay’s group reported the ultimate

detection limit by sensing at molecular resolution inside a

nanofluidic redox cycling device [14-16]. Besides the advan-

tages of electrochemical amplification, redox cycling sensors

allow for the formation of large, dense arrays of electrochem-

ical sensors that are highly desirable for applications such as

on-chip parallel biosensing or the detection of chemical com-

munication in a neuronal network. This can be achieved via the

organization of feed lines in a perpendicular arrangement. Indi-

vidual sensors are then located at each of the feed line intersec-

tions. Redox cycling is enabled at the intersection by setting the

potentials of two orthogonal feed lines to values above and

below the redox potential of an analyte. Even though faradaic

currents may also occur at all other electrodes that are

connected to the biased feed lines and are exposed to redox-

active molecules, their individual contribution to the overall

measured current is comparably small due to the strong amplifi-

cation by the redox cycling effect. Hence, individual sensors

can be easily read out by this method.

Addressable redox cycling electrode arrays have been pioneered

by the group of Matsue since 2008 and various designs have

been reported since then. Implementations include systems,

which consist of two wafers of parallel bar electrodes that are

glued face-to-face to each other [17,18], arrays of ring–ring-

based sensors with orthogonal feed lines [19], and designs

featuring interdigitated electrodes at the intersections [20].

Figure 1: Illustration of the two modes of operation: a) Sequential data
acquisition: Each intersection is read out sequentially. b) Parallel data
acquisition: Intersections are read out simultaneously in a row-wise
fashion.

Reported applications include gene-function analysis [18], elec-

troluminescence detection [21], mapping of cell topographies

[22], detection of cellular enzyme secretion [19,23], detection

of DNA hybridization [24], and evaluation of embryoid bodies

[25].

This paper describes the design and fabrication of a crossbar-

based nanocavity redox cycling sensor array that combines the

advantages of the two approaches: crossbar architecture and

nanocavity sensors. The large redox cycling amplification of the

nanocavity sensors allows such arrays to be operated in a

parallel readout for high-throughput applications. The redox

cycling response during electrochemical imaging using parallel

data acquisition is demonstrated and different modes of opera-

tion for its future use in mapping neurochemical events in cell

culture are discussed.

Results and Discussion
Our sensors offer two different modes of operation: The

sequential and the parallel readout mode. During sequential data

acquisition, each crossing point on the sensor is addressed indi-

vidually one after the other, while the electrochemical image of

the sensor surface is assembled afterwards. As it can be seen in

Figure 1a, two electrodes that are arranged perpendicular to

each other are set to potentials above and below the redox

potential, while all other electrodes remain unbiased. Redox
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Figure 2: Redox cycling currents: a) Cyclic voltammogram detected in
sequential data acquisition mode at a single intersection. b) Cyclic
voltammograms recorded at two intersections during parallel acquisi-
tion. Both data sets were recorded in 1 mM potassium hexacyanofer-
rate in PBS and filtered via a Butterworth filter. Furthermore, the data
were offset corrected and traces recorded in a single electrode setup
were subtracted from the anodic currents in order to isolate the respec-
tive redox cycling currents.

cycling is then enabled at the corresponding intersection and the

respective redox-cycling current can be detected at both elec-

trodes. In parallel acquisition mode, however, two or more elec-

trodes that are arranged perpendicular to the one oxidizing elec-

trode are biased to reducing potentials. Hence, redox cycling is

enabled at each intersection between a reducing electrode and

the oxidizing electrode, thus, resulting in a row-wise read-out.

As sketched in Figure 1b, the individual redox-cycling currents

of each intersection can be measured at the reducing electrodes,

while the current at the oxidizing electrode amounts to the sum

of all other redox cycling currents.

Figure 2 compares data of the sensor during operation in both

acquisition modes in presence of 1 mM hexacyanoferrate.

Hereby, both graphs exhibit some characteristics in common:

Below the redox potential, which can be found around 180 mV,

the current does not increase with the anodic voltage. However,

above the redox potential there is a fast increase in current,

which is due to the now enabled redox cycling. Nevertheless,

the current does not reach the expected diffusion-limited steady

state at high overpotentials. This effect can be attributed to

kinetic limitations that may be caused by impurities on the elec-

trode surfaces that remain from the fabrication process. Further-

more, in both cases the anodic and the sum of the cathodic

currents equal. Thus, redox cycling inside the sensor is highly

efficient.

Figure 3 demonstrates the concentration dependency of an indi-

vidual sensor. Hereby, a single intersection was characterized at

varied concentrations of potassium hexacyanoferrate in

sequential acquisition mode. As it can be seen in the plot

the redox cycling current scales approximately linearly

with the concentration. The slope of the sensor response was

obtained via a linear regression yielding a sensitivity of

2.4 ± 0.2 × 104 A·m−2·M−1 in the overlapping electrode area

(1.68 × 10−12·m2). Figure 4 shows a typical sensor response but

the array exhibits a large variance in sensitivity making it neces-

sary to calibrate individual sensors for quantitative imaging.

The largest current responses obtained were in the range of

1.7 × 105 A·m−2·M−1, which is still significantly less than the

theoretically expected diffusion-limited value for the devices in

case of a one-electron process if we neglect kinetic limitations

(1)

Here, c is the concentration in (mol/L), A the overlapping elec-

trode area in m2, D = 0.64 × 10−9 m2/s the diffusion coefficient,

F = 96485 C/mol the Faraday constant, and h = 65 nm the

nanocavity height. Deviations between expected and recorded

current responses in nanocavity devices have been observed

previously and are thought to depend on fabrication inhomo-

geneities and residues as well as adsorption effects limiting the

electrode kinetics.

In order to demonstrate parallel electrochemical recording at the

nanocavity crossbar array, we monitor concentration fluctua-

tions at the chip surface induced by the dissolution of a hexa-

cyanoferrate crystal [26]. For this purpose, all but one electrode

are biased to a reducing potential of −200 mV, while the one

electrode is biased to an oxidizing potential of 600 mV. In this

operation mode, redox cycling is simultaneously enabled at all

16 sensors along the oxidizing electrode and the respective

sensor signal can be read out at the corresponding perpendic-

ular cathodes. The device is then calibrated in plain 100 mM
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Figure 3: Concentration dependency of an intersection in sequential
data acquisition. Data was recorded during cyclic voltammograms at
different concentrations of potassium hexacyanoferrate in 100 mM KCl
and represents the absolute difference between the cathodic peak
current and a measurement using only the background electrolyte.

Figure 4: Electrochemical recording of the change in concentration
during dissolution of a potassium haxacyanoferrate crystal above the
sensor surface.

KCl solution as well as in a 1 mM potassium hexacyanoferrate

solution in order to linearly interpolate the response curve for

the individual sensors. After adding the 1 mM potassium hexa-

cyanoferrate solution, three sensors that are located next to each

other (the yield of functional sensors is approximately 40%) are

chosen and a potassium hexacyanoferrate crystal is added to the

solution. The so obtained electrochemical image of its dissolu-

tion after background subtraction can be seen in Figure 4. The

parallel readout of the crossbar array allows the chemical

concentration to be mapped at all active sensors simultaneously

with a millisecond temporal resolution, which is sufficient for

resolving fast dissolution processes. The sensitivity is deter-

mined by the height of the nanocavities (65 nm) while

the spatial resolution relies on the sensor array density

(ca. 244/mm2). When using the current fabrication process, the

sensor density is limited by the low yield of functional intersec-

tions, which is probably related to stability issues with the

passivation layer. Solving this problem would in principle allow

for high-density mapping in the range of 10000/mm2 for rea-

sonable cross bar pitches of 10 μm as obtainable by conven-

tional optical lithography.

Conclusion
We introduced the design and fabrication of a novel device for

the electrochemical on-chip imaging of redox molecules by

redox cycling. The presented chip was fabricated with standard

cleanroom technology and features nanocavity redox cycling

devices in a crossbar architecture for sensitive electrochemical

detection at a high sensor density. Measurements in potassium

hexacyanoferrate solution are shown and different modes of

operation are demonstrated: the sequential readout of indi-

vidual sensors and the parallel readout mode, which allows for

the spatiotemporal sensing along one feed line.

It can be assumed that the presented technique, which combines

high-density sensing of electrochemical species with redox

cycling amplification in the nanofluidic cavities, will be advan-

tageous for electrochemical imaging methods and electrochem-

ical biological assays. Particularly, one may expect that the

detection or mapping of neutrotransmitter secretion (such as the

redox-active molecule dopamine [13]) in neuronal networks

will be one of the most interesting applications [27-37]. In this

case, the sensor array is exposed to fast fluctuations in the

neurotransmitter concentration. By biasing the two parallel sets

of bar-electrodes to reducing and oxidizing potentials, one can

then correlate the electrochemical signals at orthogonal elec-

trodes, hence recording data from all sensors simultaneously

(see Figure 5). Overall, we expect a wide range of applications

for high-density nanocavity sensors and remain looking forward

to see their implementation in future imaging systems.

Experimental
Sensor design
Our device features two orthogonal sets of 16 parallel bar elec-

trodes, each. These electrodes are 14 μm wide, separated by

64 μm (center to center), and fabricated in parallel to the wafer

surface. At each intersection, the electrodes are separated by an

about 65 nm wide gap, while the arrangement is stabilized by a

thick passivation layer that covers the whole device. The inter-

electrode area is connected to the bulk reservoir via small

access channels that interpenetrate the passivation layer and

enable diffusive access to a bulk reservoir. An illustration of the

sensor array and a top view microscopic image as well as cross

sections of the nanocavity sensor, cut by a focused ion beam

(FIB), can be found in Figure 6.

Fabrication
Devices are structured by means of optical lithography and are

processed in class-100 cleanroom facilities. Nanocavities at the

intersections between platinum electrodes are formed via the
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Figure 5: Illustration of a future electrochemical setup for parallel spike recording on-chip. By correlation of individual spike events at anodic and
cathodic electrodes, all electrodes intersections can be read out simultaneously.

Figure 6: Nanocavity array chip: a) Illustration of a sensor array. The inset sketches a nanocavity sensor that can be found at each feed-line intersec-
tion. The light grey spherical layer represents the nanocavity, while the hole in the top electrode and in the passivation layer is the access channel that
connects the bulk reservoir on the chip surface to the nanocavity. b) Microscopic top view of a part of the array. c,d) Scanning electrochemical micro-
scope images of FIB-induced cross sections of a nanocavity sensor before (c) and after (d) removal of the sacrificial chromium layer. The scale bars
for the images in (b), (c), and (d) are 100 μm, 400 nm, and 400 nm, respectively.

deposition of a sacrificial layer followed by an isotropic etch.

The full device is stabilized by a silicon oxide/silicon nitride

stack that covers the full device and is solely opened trough

access holes above each crossbar intersection. Since the whole

device is covered by the passivating layer, electrodes can only

be accessed from within cavity, while a connection to the bulk

reservoir is only enabled through the access channels.

The sensor is fabricated on a thermally oxidized silicon sub-

strate while all structures are formed via lift-off processes or

reactive ion etching. Electrodes are fabricated by depositing a

titanium/platinum/chromium stack that features the thicknesses

7/50/7 nm by using electron beam evaporation. In the next step,

50 nm thick chromium sacrificial layers are deposited at the

positions of the future intersections. These layers define the

geometric features of the nanocavities. Afterwards, the top elec-

trodes are fabricated from an electron-beam evaporated stack

of chromium/platinum/titanium stack of the thicknesses

7/50/7 nm. Subsequently, a passivation composed of alter-

nating layers. SiO2/Si3N4/SiO2 is deposited via plasma

enhanced chemical vapor deposition [38]. In the next step,

access holes are etched through the passivation directly down
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onto the chromium sacrificial layer by reactive ion etching. The

chromium is then fully removed in an isotropic wet etch using

chrome etch solution.

Electrochemical methods
Electrochemical characterization is either performed via cyclic

voltammetry or amperometry. Cyclic voltammograms were

recorded using an EPC 10 patch clamp system (HEKA Elek-

tronik Dr. Schulze GmbH, Lambrecht, Germany) and the

corresponding software Patch Master. Hereby, one bar elec-

trode is swept from −200 mV to 600 mV and then sweept

reverse from 600 mV to −200 mV at a rate of 80 mV/s, while

the corresponding other electrode(s) remain at a reducing poten-

tial of −200 mV. Parallel redox cycling amperometric measure-

ments for electrochemical imaging are performed by using a

custom-built amplifier system (picoAmp64) [36]. The elec-

trodes are set to constant potentials of either −200 mV or

600 mV. All measurements are performed after a equilibration

time of 10 s, while the potential of the solution is controlled

through an Ag/AgCl reference electrode.
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