001     154847
005     20210129213952.0
037 _ _ |a FZJ-2014-04109
041 _ _ |a English
100 1 _ |a Schuck, Martin
|0 P:(DE-Juel1)145470
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) 2014
|g DPG DRESDEN14
|c Dresden
|d 2014-03-30 - 2014-04-04
|w Germany
245 _ _ |a Metal Organic Chemical Vapour Deposition of monocrystalline Ge1Sb2Te4 (GST) and Sb2Te3
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1408015267_32481
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a GST is considered as one of the most promising materials for nonvolatile phase-change memories. The phase change between its amorphous and crystalline phase is switched by current pulses of different intensity and duration. For this application the alloys along the GeTe − Sb2Te3 pseudobinary are the most suitable, since they are characterized by fast switching speed and high scalability. Their crystallization characteristics are determined by their composition, which therefore needs to be controlled.Here we present the MOCVD growth of Ge1Sb2Te4 (GST) and Sb2Te3 on Si(111) substrates using triethylantimony (TESb), diethyltelluride (DETe) and digermane as precursors and pure N2 as the carrier gas. A systematic variation of reactor pressure and growth temperature was carried out to obtain crystalline flat layers of only one composition. The deposited material was characterized by means of X-Ray Diffraction, Raman spectroscopy, atomic force and scanning electron microscopy. It was found that at low reactor pressure only 2 alloys were found: Ge1Sb2Te4 (GST) and Sb2Te3.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
536 _ _ |0 G:(EU-Grant)310339
|c 310339
|f FP7-NMP-2012-SMALL-6
|x 1
|a SYNAPSE - SYnthesis and functionality of chalcogenide NAnostructures for PhaSE change memories (310339)
700 1 _ |a Riess, Sally
|0 P:(DE-Juel1)145686
|b 1
|u fzj
700 1 _ |a Schreiber, Marcel
|0 P:(DE-Juel1)162500
|b 2
|u fzj
700 1 _ |a Mussler, Gregor
|0 P:(DE-Juel1)128617
|b 3
|u fzj
700 1 _ |a Stoica, Toma
|0 P:(DE-Juel1)128637
|b 4
|u fzj
700 1 _ |a Grützmacher, Detlev
|0 P:(DE-Juel1)125588
|b 5
|u fzj
700 1 _ |a Hardtdegen, Hilde
|0 P:(DE-Juel1)125593
|b 6
|u fzj
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:154847
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145470
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145686
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162500
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128617
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128637
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)125588
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125593
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21