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ADAPTIVE AGGREGATION BASED DOMAIN DECOMPOSITION

MULTIGRID FOR THE LATTICE WILSON DIRAC OPERATOR ∗

A. FROMMER† , K. KAHL† , S. KRIEG‡ , B. LEDER† , AND M. ROTTMANN†

Abstract. In lattice QCD computations a substantial amount of work is spent in solving
discretized versions of the Dirac equation. Conventional Krylov solvers show critical slowing down for
large system sizes and physically interesting parameter regions. We present a domain decomposition
adaptive algebraic multigrid method used as a preconditioner to solve the “clover improved” Wilson
discretization of the Dirac equation. This approach combines and improves two approaches, namely
domain decomposition and adaptive algebraic multigrid, that have been used separately in lattice
QCD before. We show in extensive numerical tests conducted with a parallel production code
implementation that considerable speed-up over conventional Krylov subspace methods, domain
decomposition methods and other hierarchical approaches for realistic system sizes can be achieved.

Key words. multilevel, multigrid, lattice QCD, Wilson Dirac operator, domain decomposition,
aggregation, adaptivity, parallel computing.
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1. Introduction. Lattice QCD simulations are among the world’s most de-
manding computational problems, and a significant part of today’s supercomputer
resources is spent in these simulations [9, 31]. Our concern in this paper is three-fold:
We want to make the mathematical modeling related with QCD and lattice QCD
more popular in the scientific computing community and therefore spend some effort
on explaining fundamentals. On top of that we develop a new and efficient adaptive
algebraic multigrid method to solve systems with the discretized Dirac operator, and
we show results for a large number of numerical experiments based on an advanced,
production code quality implementation with up-to-date physical data.

The computational challenge in lattice QCD computations consists of repeatedly
solving very large sparse linear systems

Dz = b, (1.1)

where D = D(U,m) is a discretization, typically the Wilson discretization, of the
Dirac operator on a four-dimensional space-time lattice. The Wilson Dirac opera-
tor depends on a gauge field U and a mass constant m. Recently, lattices with up
to 144 × 643 lattice points have been used, involving the solution of linear systems
with 452,984,832 unknowns [1, 5, 6, 23, 26]. Usually these linear systems are solved
by standard Krylov subspace methods. Their iteration count increases tremendously
when approaching the physically relevant parameter values (i.e., physical mass con-
stants and lattice spacing a→ 0), a phenomenon referred to as “critical slowing down”
in the physics literature. Thus it is of utmost importance to develop preconditioners
which overcome these scaling issues. The most common preconditioners nowadays are
odd-even preconditioning [20, 37], deflation [41], and domain decomposition [28, 40].
While these approaches yield significant speed-ups over the unpreconditioned versions,
their scaling behavior is unchanged and critical slowing down still occurs.
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Multigrid methods have been considered in the lattice QCD community as well,
motivated by their potential (e.g., for elliptic PDEs) of convergence independent of
the lattice spacing. However, due to the random nature of the gauge fields involved,
the treatment of the lattice Dirac equation by multigrid methods based solely on the
underlying PDE, has been elusive for the last twenty years [8, 17, 34, 56]. With the
advent of adaptive algebraic multigrid methods, effective preconditioners for QCD
calculations could be constructed in recent years. The pioneering work from [3, 4,
14, 44] showed very promising results. There, an adaptive non-smoothed aggregation
approach based on [15] has been proposed for the solution of the Wilson Dirac system.
An implementation is publicly available as part of the QOPQDP package [43].

Within the physics community, another hierarchical technique, the recently pro-
posed domain decomposition type solver named inexact deflation developed in [41] is
widely used. A well-optimized code for this solver is publicly available [38]. Inexact
deflation can be regarded as an adaptive method as well. It performs a setup phase
which allows the construction of a smaller system, the little Dirac operator, which is
then used as part of an efficient preconditioner. Although there is an intimate con-
nection with the aggregation based multigrid approach from [15], inexact deflation
seems to have been developed completely independently. As a consequence, the in-
exact deflation method does not resemble a typical multigrid method in the way its
ingredients are arranged. In particular, it requires the little Dirac system to be solved
to high accuracy in each iteration.

In this paper we present a multigrid method that combines aspects from [41],
namely a domain decomposition smoother, and from non-smoothed aggregation as in
[4, 44]. Our approach elaborates on the multigrid methods from [4, 44] in that we
use a domain decomposition method as the smoother instead of the previously used
Krylov subspace smoother. This allows for a natural and efficient parallelization,
also on hybrid architectures. Moreover, we substantially improve the adaptive setup
from [4, 44] and [41] in the sense that less time is required to compute the operator
hierarchy needed for an efficient multigrid method. Our approach can also be regarded
as turning the domain decomposition technique from [41] into a true multigrid method.
The “little Dirac” system now needs to be solved only to low accuracy. This allows, in
particular, to apply the method recursively and thus opens the way for a more efficient
multi-grid method instead of just a two-grid method. With the inexact deflation
approach this is not possible.

The paper is organized as follows. In section 2 we give an introduction into lattice
QCD for the non-specialist and we introduce the domain decomposition Schwarz
method in this context. In section 3 we first outline algebraic multigrid methods in
general and then focus on aggregation based approaches. Thereby we address the
peculiarities of lattice QCD and explain different possible adaptive strategies for the
construction of the multigrid hierarchy. The inexact deflation method from [41] is
discussed in section 4, where in particular we point out the differences to a multigrid
method and describe the adaptive nature of its setup. In section 5 we finally formulate
our multigrid approach, for which we present thorough numerical tests in section 6.

2. Lattice Quantum Chromodynamics. Quantum Chromodynamics (QCD)
or the theory of strong interactions, is a quantum field theory in four-dimensional
space-time and part of the standard model of elementary particle physics. It has a
high predictive power, i.e., a small number of free parameters. Predictions that can
be deduced from this theory are amongst others the masses of hadrons, composite
particles bound by the strong interaction (e.g., nucleon, pion; cf. [22]). The masses
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of hadrons and many other predictions have to be obtained non-perturbatively, i.e.,
via numerical simulations requiring the discretization and numerical evaluation of the
theory. After a brief description of relevant aspects of continuum QCD we introduce
its discretization on a hyper-cubic lattice and discuss the need of iterative (Krylov
subspace) methods for the solution of the arising linear systems of equations. Due
to their ill-conditioned nature, preconditioning is advised and the use of a domain
decomposition method is discussed as a prerequisite for our multigrid construction.

2.1. Continuum QCD. A thorough description of QCD as a quantum field
theory is beyond the scope of this paper. Instead we just introduce the reader to im-
portant concepts and the notation necessary to understand the lattice discretization.

The degrees of freedom of QCD are matter fields, called quarks, and gauge fields,
called gluons. At the heart of the numerical methods for lattice QCD is a discretized
version of the continuum Dirac equation

(D +m)ψ = η (2.1)

which describes the dynamics of the quarks and the interaction of quarks and gluons
for a given gluon field background. Here, ψ = ψ(x) and η = η(x) represent matter
fields. These depend on x, the points in space-time, x = (x0, x1, x2, x3)

1. The gluons
are represented in the Dirac operator D to be discussed below, and m represents a
scalar mass parameter not depending on x. This mass parameter sets the mass of the
quarks in the QCD theory.

In the continuum theory the Dirac operator D can be written as

D =
3

∑

µ=0

γµ ⊗ (∂µ +Aµ) ,

where ∂µ = ∂/∂xµ and Aµ(x) is the gauge field. The anti-hermitian traceless matrices
Aµ(x) are elements of su(3), the Lie algebra of the special unitary group SU(3).

The quark fields ψ and η in (2.1) carry two indices that are suppressed, i.e.,
ψ = ψcσ. These indices label internal degrees of freedom of the quarks; one is called
color (c = 1, 2, 3) and the other spin (σ = 0, 1, 2, 3). At each point x in space-time, we
can represent the spinor ψ(x), i.e., the quark field ψ at a given point x, as a twelve
component column vector

ψ(x) = (ψ10(x), ψ20(x), ψ30(x), ψ11(x), . . . , ψ33(x))
T . (2.2)

In case operations act unambiguously on the color but differently on the spin degrees
of freedom we use the notation ψσ to denote those components of the quark field
belonging to the fixed spin index σ. For a given point x, ψσ(x) is thus represented
by a three component column vector ψσ(x) = (ψ1σ(x), ψ2σ(x), ψ3σ(x))

T . The value
of the gauge field Aµ at point x is in the matrix representation of su(3) and acts
non-trivially on the color and trivially on the spin degrees of freedom, i.e, (Aµψ)(x) =
(I4 ⊗Aµ(x))ψ(x).

The γ-matrices γ0, γ1, γ2, γ3 ∈ C
4×4 act non-trivially on the spin and trivially on

the color degrees of freedom, i.e. (γµψ)(x) = (γµ ⊗ I3)ψ(x) . They are hermitian and

1Physical space-time is a four dimensional Minkowski space. We present the theory in Euclidean
space-time since this version can be treated numerically. The two versions are equivalent, cf. [42].
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unitary matrices which generate a Clifford algebra, satisfying

γµγν + γνγµ =

{

2 · I4 µ = ν

0 µ 6= ν
for µ, ν = 0, 1, 2, 3. (2.3)

Unlike the gauge fields Aµ, the γ-matrices do not depend on x.
The covariant derivative ∂µ+Aµ is a “minimal coupling extension” of the deriva-

tive ∂µ, ensuring that ((∂µ+Aµ)ψ)(x) transforms in the same way as ψ(x) under local
gauge transformations, i.e., a local change of the coordinate system in color space.
As part of the covariant derivative the Aµ’s can be seen as connecting different (but
infinitesimally close) space-time points. The combination of covariant derivatives and
the γ-matrices ensures that Dψ(x) transforms under the space-time transformations
of special relativity in the same way as ψ(x). Local gauge invariance and special
relativity are fundamental principles of the standard model of elementary particle
physics.

2.2. Lattice QCD. In order to compute predictions in QCD from first princi-
ples and non-perturbatively, the theory of QCD has to be discretized and simulated
on a computer. The discretization error is then accounted for by extrapolation to the
continuum limit based on simulations at different lattice spacings. One of the most
expensive tasks in these computations is the solution of the discretized Dirac equa-
tion for a given right hand side. In this section we give a brief introduction into the
principles of this discretization and discuss some properties of the arising linear op-
erators. Since the discretization is typically formulated on an equispaced lattice, this
treatment of QCD is also referred to as lattice QCD. For a more detailed introduction
to QCD and lattice QCD we refer the interested reader to [19, 29, 42].

Consider a four-dimensional torus T . On T we have a periodic Nt × N
3
s lattice

L ⊂ T with lattice spacing a and nL = Nt ·N
3
s lattice points. In here Ns denotes the

number of lattice points for each of the three space dimensions and Nt the number of
lattice points in the time dimension. Hence, for any x, y ∈ L there exists p ∈ Z4 such
that

y = x+ a · p, i.e., yµ = xµ + a · pµ for µ = 0, 1, 2, 3.

For shift operations on the lattice, we define shift vectors µ̂ ∈ R4 by

µ̂ν =

{

a µ = ν

0 else.

A quark field ψ is defined at each point of the lattice, i.e., it is a function

ψ : L → C12

x 7→ ψ(x)

on the lattice L which maps a point x ∈ L to a spinor ψ(x). As in continuum QCD,
this spinor again has color and spin indices ψcσ, c = 1, 2, 3, σ = 0, 1, 2, 3. For future
use we introduce the symbols C and S for the color and the spin space, i.e.,

C = {1, 2, 3}, S = {0, 1, 2, 3}.

The gauge fields Aµ(x) connecting infinitesimally close space-time points in con-
tinuum QCD have to be replaced by objects that connect points at finite distances.
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Uµ(x+ ν̂)

Uν(x+ µ̂)

Uµ(x− µ̂) Uµ(x) Uµ(x+ µ̂)

Uν(x− ν̂) Uν(x+ µ̂− ν̂)

x+ ν̂ x+ µ̂+ ν̂

Uν(x+ µ̂) Uν(x+ µ̂+ ν̂)

Uν(x)

x+ µ̂x

Uµ(x− µ̂+ ν̂) Uµ(x+ µ̂+ ν̂)

Fig. 2.1. Naming conventions on the lattice.

ν̂

µ̂

Fig. 2.2. The clover term.

To this purpose variables Uµ(x) are introduced. Uµ(x) connects x and x+ µ̂, so that
we regard Uµ(x) as being associated with the link between x and x + µ̂. The link
between x+µ̂ and x, pointing in the opposite direction, is then given by Uµ(x)

−1. The
matrices Uµ(x) are an approximation to the path-ordered exponential of the integral
of Aµ along the link. They satisfy

Uµ(x) ∈ SU(3), in particular Uµ(x)
−1 = Uµ(x)

H .

Figure 2.1 illustrates the naming conventions on the lattice. Uµ(x) is called a gauge
link and the set of all gauge links {Uµ(x) : x ∈ L, µ = 0, 1, 2, 3} is called configuration.

The covariant derivative of the continuum theory can be discretized in many
ways. Here we restrict ourselves to the widely used Wilson discretization (cf. [57]),
noting that the multigrid solver developed in this paper is in principle applicable
to any discretization resulting in local couplings. We define forward covariant finite
differences

(∆µψσ) (x) =
1
a
(Uµ(x)ψσ(x+ µ̂)− ψσ(x))

·
= (∂µ +Aµ)ψσ(x)

and backward covariant finite differences

(∆µψσ) (x) =
1
a

(

ψσ(x)− U
H
µ (x− µ̂)ψσ(x− µ̂)

)

.

Since (∆µ)H = −∆µ, the centralized covariant finite differences (∆µ + ∆µ)/2 are
anti-hermitian. The simplest discretization of the Dirac operator D is then given by

DN =
∑3

µ=0 γµ ⊗ (∆µ +∆µ) /2.

This naive discretization generates unphysical eigenvectors, a standard phenomenon
when discretizing first order derivatives using central finite differences, cf. [52], also
known as the “species doubling effect” or “red-black instability”. The eigenspace
for each eigenvalue of DN has dimension 16, but only a one-dimensional subspace
corresponds to an eigenfunction of the continuum operator. Wilson introduced the
stabilization term a∆µ∆

µ, a centralized second order covariant finite difference, to
avoid this problem. The Wilson discretization of the Dirac operator is thus given by

DW = m0

a
I + 1

2

∑3
µ=0

(

γµ ⊗ (∆µ +∆µ)− aI4 ⊗∆µ∆
µ
)

, (2.4)

where the mass parameter m0 sets the quark mass (for further details, see [42]).
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The commutativity relations (2.3) of the γ-matrices imply a non-trivial symmetry
of DW . Defining γ5 = γ0γ1γ2γ3 we have γ5γµ = −γµγ5 for µ = 0, 1, 2, 3, and since γµ
and γ5 are hermitian we see that γ5γµ is anti-hermitian. Thus the operator (γ5γµ)⊗
(∆µ+∆µ) is hermitian, being the product of two anti-hermitian operators. To describe
the resulting Γ5-symmetry of the Wilson Dirac operator, we define Γ5 = InL

⊗ γ5⊗ I3
and have (Γ5DW )H = Γ5DW .

To reduce the order of the discretization error as a function of a, the Sheikho-
leslami-Wohlert or “clover” term (cf. [49] and Figure 2.2), depending on a parameter
csw, is added to the lattice Wilson Dirac operator

D = DW −
csw
32a

3
∑

µ,ν=0

(γµγν)⊗ (Qµν −Qνµ), (2.5)

where (Qµνψσ) (x) = Qµν(x)ψσ(x) with

Qµν(x) = Uµ(x)Uν(x + µ̂)Uµ(x+ ν̂)H Uν(x)
H+

Uν(x)Uµ(x − µ̂+ ν̂)H Uν(x − µ̂)
H Uµ(x− µ̂)+

Uµ(x− µ̂)
H Uν(x− µ̂− ν̂)

H Uµ(x− µ̂− ν̂)Uν(x− ν̂)+
Uν(x − ν̂)

H Uµ(x− ν̂)Uν(x− ν̂ + µ̂)Uµ(x)
H .

The clover term is diagonal on the lattice L. It removes O(a)-discretization effects
from the covariant finite difference discretization of the covariant derivative (for ap-
propriately tuned csw ; see [49] and references therein). The resulting discretized Dirac
operator D thus has discretization effects of order O(a2). It is again Γ5-symmetric,
i.e., we have

(Γ5D)H = Γ5D. (2.6)

The Γ5-symmetry induces a symmetry on the spectrum of D:
Lemma 2.1. Every right eigenvector ψλ to an eigenvalue λ of D corresponds to

a left eigenvector ψ̂λ̄ = Γ5ψλ to the eigenvalue λ̄ of D and vice versa. In particular,
the spectrum of D is symmetric with respect to the real axis.

Proof. Due to DH = Γ5DΓ5 we have

Dψλ = λψλ ⇔ ψH
λ D

H = λ̄ψH
λ ⇔ (Γ5ψλ)

HD = λ̄(Γ5ψλ)
H . 2

Summarizing, D ∈ Cn×n is a sparse matrix which represents a nearest neighbor
coupling on a periodic 4D lattice. The lattice has nL = NtN

3
s sites, each holding

12 variables, so that n = 12nL. D has the symmetry property (2.6), depends on a
mass parameter m0, the Sheikholeslami-Wohlert constant csw, and a configuration
{Uµ(x) : x ∈ L, µ = 0, 1, 2, 3}. In practice m0 is negative, and for physically relevant
mass parameters, the spectrum of D is contained in the right half plane, cf. Fig. 2.3
and Fig. 2.4.

While the continuum Dirac operator is normal, the Wilson Dirac operator is not,
but it approaches normality when discretization effects become smaller. For small
lattice spacing, large lattice sizes and physically relevant mass parameters we can
thus expect that the whole field of values F(D) = {ψHDψ : ψHψ = 1} of D is in the
right half plane.

To explicitly formulate D in matrix terms we fix a representation for the γ-
matrices as

γ0 =







i

i

−i

−i






, γ1 =







−1
1

1
−1






, γ2 =







i

−i

−i

i






, γ3 =







1
1

1
1






,
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Fig. 2.3. Spectrum of a 44 Wilson Dirac
operator; m0 = 0, csw = 0.
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Fig. 2.4. Spectrum of a 44 “Clover im-
proved” operator; m0 = 0, csw = 1.

resulting in

γ5 = diag(1, 1,−1− 1).

Thus γ5 acts as the identity on spins 0 and 1 and as the negative identity on spins 2
and 3. D is then given via

(Dψ)(x) =
1

a

(

(m0 + 4)I12 −
csw
32

3
∑

µ,ν=0

(γµγν)⊗
(

Qµν(x)−Qνµ(x)
)

)

ψ(x)

−
1

2a

3
∑

µ=0

((I4 − γµ)⊗ Uµ(x))ψ(x + µ̂)

−
1

2a

3
∑

µ=0

(

(I4 + γµ)⊗ U
H
µ (x− µ̂)

)

ψ(x− µ̂).

2.3. Domain Decomposition in Lattice QCD. For ease of notation we from
now on drop the lattice spacing a, so that the lattice L is given as

L = {x = (x0, x1, x2, x3), 1 ≤ x0 ≤ Nt, 1 ≤ x1, x2, x3 ≤ Ns}.

Let us also reserve the terminology block decomposition for a tensor type decom-
position of L into lattice-blocks. The precise definition is as follows.

Definition 2.2. Assume that {T 0
1 , . . . , T

0
ℓ0
} is a partitioning of {1, . . . , Nt} into

ℓ0 blocks of consecutive time points,

T 0
j = {tj−1 + 1, . . . , tj}, j = 1, . . . , ℓ0, 0 = t0 < t1 . . . < tℓ0 = Nt,

and similarly for the spatial dimensions with partitionings {T µ
1 , . . . , T

µ
ℓµ
}, µ = 1, 2, 3.

A block decomposition of L is a partitioning of L into ℓ = ℓ0ℓ1ℓ2ℓ3 lattice-blocks
Li, where each lattice-block is of the form

Li = T
0
j0(i)
× T 1

j1(i)
× T 2

j2(i)
× T 3

j3(i)
.

Accordingly we define a block decomposition of all 12nL variables in V = L × C × S
into ℓ blocks Vi by grouping all spin and color components from the lattice-block Li,

Vi = Li × C × S. (2.7)
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Since the systems arising in lattice QCD calculations tend to have hundreds of
millions of unknowns they require the use of parallel computers. For this reason
and due to the fact that, as a rule, naive domain decomposition is already used to
parallelize the matrix vector productDz which is needed for Krylov subspace methods,
it is natural to also use a domain decomposition approach as a preconditioner.

The method of choice here is a colored version of the multiplicative Schwarz
method [48, 51]. Since the discretized Dirac operator has only nearest-neighbor cou-
plings, only two colors are needed. For a block decomposition of the lattice and
variable blocks Vi according to (2.7), let the corresponding trivial embeddings, block
systems and block solvers be denoted by

IVi
: Vi → V , Di = I

T
Vi
DIVi

and Bi = IVi
D−1

i I
T
Vi
.

For red-black multiplicative Schwarz the lattice blocks are divided into two groups
(red and black) such that no equation in D couples variables from different blocks of
the same color. Given the residual r = b−Dx, the solutions ei of the local systems

Diei = I
T
Vi
r, (2.8)

yield the corrections for the iterate x. More precisely, with the shorthand Bcolor =
∑

i∈color Bi and

K = Bblack (I −DBred ) +Bred

we can summarize one iteration (ν = 1) of red-black multiplicative Schwarz as (cf. [51])

z ← (I −KD)z +Kb. (2.9)

Since the solution z∗ = D−1b satisfies z∗ = (I−KD)z∗+Kb, the update for the error
is e← (I −KD)e, with I −KD the error propagation operator,

ESAP = I −KD = (I −Bblack D)(I −Bred D) .

The red-black Schwarz method has been introduced to lattice QCD in [40] and
has been used ever since in several lattice QCD implementations as a preconditioner
(cf. [2, 28, 41]). In this context red-black Schwarz is also known as Schwarz Alternating
Procedure (SAP). In what follows the application of ν iterations of SAP to a vector
b with initial guess z = 0 is denoted by the linear operator

M
(ν)
SAPb =

ν−1
∑

k=0

(I −KD)kK b .

This representation follows by repeated application of (2.9). Note that ESAP =

I −MSAPD with MSAP =M
(1)
SAP .

Typically the solution of the local systems (2.8), required when computing Bir, is
approximated by a few iterations of a Krylov subspace method (e.g., GMRES). When
incorporating such an approximate solver, the SAP method becomes a non-stationary
iterative process. Hence it is necessary to use flexible Krylov subspace methods like
FGMRES or GCR in case that SAP is used as a preconditioner (cf. [28, 40, 47]).

It turns out that SAP as a preconditioner is not able to remedy the unfavorable
scaling behavior of Krylov subspace methods with respect to system size, quark mass
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Fig. 2.6. Error component reduction on a 44

lattice with block size 24

and physical volume. When analyzing this behavior, one realizes that SAP reduces
error components belonging to a large part of the spectrum very well, but a small part
is almost not affected by SAP. We illustrate this in Figure 2.6 where the horizontal
axis represents the eigenvectors v of D in ascending order of the absolute value of
the corresponding eigenvalue; the vertical axis gives the ratio ‖ESAPv‖/‖v‖. The
ratio is small for larger eigenvalues and becomes significantly larger for the small
eigenvalues. This behavior is typical for a smoother in an algebraic multigrid method
which motivated us to use SAP in this context.

3. Algebraic Multigrid Methods. Any multigrid method consists of two com-
ponents, a smoother and a coarse grid correction [15, 32, 46, 54]. Typically, the
smoother can be chosen as a simple iterative method. This can be a relaxation
scheme like Jacobi or Gauss-Seidel or their block variants as well as Krylov subspace
methods. Given the properties of SAP presented in the previous section we choose
SAP as our smoothing scheme in the QCD context.

Let us reserve the term near kernel for the space spanned by the eigenvectors
belonging to small (in modulus) eigenvalues of D. Since SAP is not able to sufficiently
remove error components belonging to the near kernel (cf. Figure 2.6), the multigrid
method treats these persistent error components separately in a smaller subspace with
nc variables. Thus, this subspace should approximate the near kernel. The typical
algebraic multigrid setup is then as follows: We have to find an operator Dc which
resembles D on that subspace both in the sense that it acts on the near kernel in a
similar manner as D does, but also in terms of the connection structure and sparsity.
The latter allows to work on Dc recursively using the same approach, thus going from
two-grid to true multigrid. We also need a linear map R : Cn → Cnc to restrict
information from the original space to the subspace and a linear map P : Cnc → Cn

which transports information back to the original space. The coarse grid correction
for a current iterate z on the original space is then obtained by restricting the residual
r = b −Dz to the subspace, there solving

Dcec = Rr (3.1)

and transporting the coarse error ec back to the original space as a correction for z,
resulting in the subspace correction

z ← z + PD−1
c Rr, r = b−Dz (3.2)

9



with the corresponding error propagator

I − PD−1
c RD.

Typically, the coarse grid system is obtained as the Petrov-Galerkin projection
with respect to P and R, i.e.,

Dc = RDP.

The coarse grid correction I − P (RDP )−1RD then is a projection onto range(RD)⊥

along range(P ). The action of the coarse grid correction is thus complementary to that
of the smoother if range(P ) approximately contains the near kernel and range(RD)⊥

approximately contains the remaining complementary eigenvectors (which are then
efficiently reduced by the smoother). The latter condition is satisfied if range(R)
approximately contains the left eigenvectors corresponding to the small eigenvalues.
This can be seen by looking at exact eigenvectors: Since left and right eigenvectors
are mutually orthogonal, if range(R) = range(RD) is spanned by left eigenvectors of
D, then range(R)⊥ is spanned by the complementary right eigenvectors of D.

OnceDc is found a basic two-level algorithm consists of alternating the application
of the smoother and the coarse grid correction. This procedure can be recursively
extended to true multigrid by formulating a two-level algorithm of this kind for the
solution of (3.1) until we obtain an operator which is small enough to solve (3.1)
directly.

To be computationally beneficial, solving (3.1) has to be much cheaper than
solving the original equation Dz = b. For this purpose Dc has to be very small or
sparse. As the number of eigenvectors that are not sufficiently reduced by the SAP
smoother grows with n, cf. [7], one should not aim at fixing nc (like in deflation
methods), but at finding sparse matrices R and P whose ranges approximate the left
and right near kernel of D well, respectively.

3.1. Aggregation-based Intergrid Transfer Operators. Consider a block
decomposition of the lattice L with lattice-blocks Li. It has been observed in [41] that
eigenvectors belonging to small eigenvalues of D tend to (approximately) coincide on a
large number of lattice-blocks Li, a phenomenon which was termed “local coherence”.
Local coherence means in particular that we can represent many eigenvectors with
small eigenvalues from just a few by decomposing them into the parts belonging
to each of the lattice-blocks. We refer to [41] for a detailed qualitative analysis of
this observation. Local coherence is the philosophy behind the aggregation-based
intergrid transfer operators introduced in a general setting in [11, 15] and applied to
QCD problems in [4, 14, 44].

Definition 3.1. An aggregation {A1, . . . ,As} is a partitioning of the set V =
L×C ×S of all variables. It is termed a lattice-block based aggregation if each Ai is
of the form

Ai = Lj(i) ×Wi,

where Lj are the lattice-blocks of a block decomposition of L and Wi ⊆ C × S.
Aggregates for the lattice Wilson Dirac operator (2.5) will typically be realized

as lattice-block based aggregates. Note that, however, the SAP smoother on the one
hand and interpolation and restriction on the other hand do not have to be based on
a common block decomposition of L.
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Starting from a set of test vectors {v1, . . . , vN} which represent the near kernel
and a set of aggregates {A1, . . . ,As}, the interpolation P is obtained by decomposing
the test vectors over the aggregates

(v1 | . . . | vN ) =









































−→ P =























. . .























A1

A2

...

As

. (3.3)

Formally, each aggregate Ai induces N variables (i − 1)N + 1, . . . , iN on the coarse
system, and we define

Pe(i−1)N+j = I
T
Ai
vj , i = 1, . . . , s, j = 1, . . . , N. (3.4)

Herein, IAi
represents the trivial restriction operator for the aggregate Ai, i.e., I

T
Ai
vj

leaves the components of vj from Ai unchanged while zeroing all others, and e(i−1)N+j

denotes the (i− 1)N + j-th unit vector. For the sake of stability, the test vectors are
orthonormalized locally, i.e., for each i we replace ITAi

vj in (3.4) by the j-th basis

vector of an orthonormal basis of span(ITAi
v1, . . . , I

T
Ai
vN ). This does not alter the

range of P nor does it change the coarse grid correction operator I −P (RDP )−1RD,
and it ensures PHP = I.

The restriction R is obtained in an analogous manner by using a set of test
vectors {v̂1, . . . , v̂N} and the same aggregates to build RH . Figure 3.1 illustrates a
lattice-block based aggregation from a lattice point of view—again reduced to two
dimensions—where in each aggregate A we take Wi as the whole set C × S. Then
the aggregates can be viewed as forming a new, coarse lattice and the sparsity and
connection structure of Dc = RDP resembles the one of D, i.e., we have again a
nearest neighbor coupling. Each lattice point of the coarse grid, i.e., each aggregate,
holds N variables.

A3

A1 A2

A4

R

P

D Dc

Fig. 3.1. Aggregation-based interpolation (geometrical point of view reduced to 2D)

3.2. Petrov-Galerkin Approach in Lattice QCD. The structure and the
spectral properties of the Wilson Dirac operator D suggest to explicitly tie the re-
striction R to the interpolation P . The following construction of P—and thus R—is
similar to constructions found in [4, 14, 41, 44] in the sense that the structure of
all these interpolation operators is similar while the test vectors vi upon which the
interpolation is built—and therefore the action of the operators—are different.
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Due to Lemma 2.1 it is natural to choose

R = (Γ5P )
H

in the aggregation based intergrid operators: if P is built from vectors v1, . . . , vN which
approximate right eigenvectors with small eigenvalues of D, then R = (Γ5P )

H is built
from vectors v̂i = Γ5vi which approximate left eigenvectors with small eigenvalues.

As was pointed out in [4], it is furthermore possible to even obtain R = PH by
taking the special spin-structure of the Dirac operator into account when defining the
aggregates. To be specific, we introduce the following definition.

Definition 3.2. The aggregation {Ai, i = 1, . . . , s} is termed Γ5-compatible if
any given aggregate Ai is composed exclusively of fine variables with spin 0 and 1 or
of fine variables with spin 2 and 3.

Assume that we have a Γ5-compatible aggregation and consider the interpolation
operator P from (3.3). Since Γ5 acts as the identity on spins 0 and 1 and as the
negative identity on spins 2 and 3, when going from P to Γ5P each of the non-zero
blocks in P belonging to a specific aggregate is either multiplied by +1 or by −1.
This gives

Γ5P = PΓc
5. (3.5)

with Γc
5 acting as the identity on the spin-0-1-aggregates and as the negative identity

on the spin-2-3-aggregates.
Lemma 3.3. Let the aggregation be Γ5-compatible and P the corresponding

aggregation based prolongation as in (3.3) and R = (Γ5P )
H . Consider the two coarse

grid operators

DPG
c = RDP, and Dc = PHDP.

Then
(i) Dc = Γc

5D
PG
c .

(ii) I − PD−1
c PHD = I − P (DPG

c )−1RD.
(iii) DPG

c is hermitian, Dc is Γc
5-symmetric.

(iv) For the field of values F(D) = {ψHDψ : ψHψ = 1}, we have F(Dc) ⊆ F(D).
Proof. We first observe that just as Γ5 the matrix Γc

5 is diagonal with diagonal
entries +1 or −1, so Γc

5 = (Γc
5)

H = (Γc
5)

−1. Part (i) now follows from

DPG
c = RDP = (Γ5P )

HDP = (PΓc
5)

HDP = Γc
5P

HDP = Γc
5Dc.

Consequently,

P (DPG
c )−1RD = PD−1

c Γc
5P

HΓ5D = PD−1
c Γc

5Γ
c
5P

HD = PD−1
c PHD,

which gives (ii). For part (iii) we observe that

(DPG
c )H = PHDHRH = PHDHΓ5P = PHΓ5DP = RDP = DPG

c .

This shows that DPG
c is hermitian, which is equivalent to Dc = Γc

5D
PG
c being Γc

5-
symmetric. Finally, since PHP = I, we have

F(Dc) = {ψH
c Dcψc : ψ

H
c ψc = 1} = {(Pψc)

HD(Pψc) : (Pψc)
H(Pψc) = 1}

⊆ {ψHDψ : ψHψ = 1} = F(D),
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which gives (iv).
Lemma 3.3 has some remarkable consequences. Part (ii) shows that we end up

with the same coarse grid correction, irrespectively of whether we pursue a Petrov-
Galerkin approach (matrix DPG

c with R = Γ5P ) or a Galerkin approach (matrix
Dc, restriction is the adjoint of the prolongation). The Petrov-Galerkin matrix DPG

c

inherits the hermiticity of the matrix Γ5D, whereas the Galerkin matrix Dc inherits
the Γ5-symmetry (and thus the symmetry of the spectrum, see Lemma 2.1) of D.
Moreover, if F(D) lies in the right half plane, then so does F(Dc) and thus the
spectrum of Dc. It is known that the “symmetrized” Wilson Dirac operator Γ5D is
close to maximally indefinite [30], i.e., the number of negative eigenvalues is about
the same as the positive ones. This property is also inherited by Γc

5Dc = DPG
c .

Γ5-symmetry implies an interesting connection between the eigensystem of Γ5D
and the singular values and vectors of D. Indeed, if

Γ5D = V ΛV H , Λ diagonal, V HV = I

denotes the eigendecomposition of the hermitian matrix Γ5D, then

D = (Γ5V sign(Λ)) |Λ| V H = UΣV H (3.6)

is the singular value decomposition of D with the unitary matrix U = Γ5V sign(Λ)
and Σ = |Λ|.

The theory of algebraic multigrid methods for non-hermitian problems recently
developed in [16] suggests to base interpolation and restriction on the right and left
singular vectors corresponding to small singular values rather than on eigenvectors, so
we could in principle use the relation (3.6). However, obtaining good approximations
for the singular vectors belonging to small singular values is now much harder than
obtaining good approximations to eigenvectors belonging to small eigenvalues, since
the small singular values lie right in the middle of the spectrum of Γ5D, whereas the
small eigenvalues of D lie at the “border” of its spectrum (and in the right half plane
C

+ if F(D) ⊂ C
+). Numerically we did not find that going after the singular values

payed off with respect to the solver performance and it significantly increased the
setup timing. These observations led us to the eigenvector based adaptive multigrid
approach presented here; it also motivates that we consider Dc rather than DPG

c as
the “correct” coarse grid system to work with recursively in a true multigrid method.

In our computations, we take special Γ5-compatible, lattice-block based aggrega-
tions.

Definition 3.4. Let Lj , j = 1, . . . , sL be a block decomposition of the lattice L.
Then the standard aggregation {Aj,σ, j = 1, . . . , sL, σ = 0, 1} is given by

Aj,0 = Lj × {0, 1} × C, Aj,1 = Lj × {2, 3} × C.

Aggregates of the standard aggregation always combine two spin degrees of free-
dom in a Γ5-compatible manner and all three color degrees of freedom. For any given
j, the two aggregates Aj,0 and Aj,1 are the two only aggregates associated with the
lattice-block Lj . The standard aggregates thus induce a coarse lattice Lc with nLc

sites where each coarse lattice site corresponds to one lattice-block Lj and holds 2N
variables with N the number of test vectors. N variables correspond to spin 0 and 1
(and aggregate Aj,0); another N variables to spin 2 and 3 (and aggregate Aj,1). Thus
the overall system size of the coarse system is nc = 2NnLc

.
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With standard aggregation, in addition to the properties listed in Lemma 3.3,
the coarse system Dc = PHDP also preserves the property that coarse lattice points
can be arranged as a 4D periodic lattice such that the system represents a nearest
neighbor coupling on this torus. Each coarse lattice point now carries 2N variables.

We also note that applying R and P to a vector does not require any communi-
cation in a parallel implementation if whole aggregates are assigned to one process.

3.3. Adaptivity in Aggregation-based AMG. If no a priori information
about the near kernel is available, the test vectors v1, . . . , vN to be used in an aggre-
gation based multigrid method have to be obtained computationally during a setup
phase. We now briefly review the setup concept of adaptive (smoothed) aggregation
as described in [15]. We do so in the Galerkin context, i.e., we take R = PH . The first
fundamental idea of adaptivity in algebraic multigrid methods is to use the smoother
to find error components not effectively reduced by the smoother, i.e., belonging to
the near kernel. Starting with an initial random vector u, some iterations with the
smoothing scheme on the homogeneous equations Du = 0 yield a vector ṽ rich in
components that are not effectively reduced. The first set of test vectors then is the
singleton {v}, and one constructs the corresponding aggregation based interpolation
P from (3.3). This construction guarantees that v is in range(P ) and thus is treated
on the coarse grid. Once a first two- or multigrid method is constructed in this way,
one can use it to generate an additional vector not effectively reduced by the current
method by again iterating on the homogeneous system. This newly found vector is
added to the set of test vectors upon which we build new interpolation and coarse grid
operators. Continuing in this manner we ultimately end up with a multigrid method
which converges rapidly, but possibly at a high computational cost for the setup if
many vectors need to be generated and incorporated in the interpolation operator.
To remedy this issue, already in [15], some sophisticated ideas to filter the best infor-
mation out of the produced vectors, are proposed which have been partly used in the
implementations of adaptive algebraic multigrid for QCD described in [4, 14, 44].

3.4. Adaptivity in Bootstrap AMG. It is possible to use the current multi-
grid method in an adaptive setup in more ways than just to test it for deficiencies
by applying it to the homogeneous equation Du = 0. This is done in the bootstrap
approach pursued in [12, 13] which we sketch now. Details will be discussed in con-
nection with the inexact deflation method in sections 4.3 and 5.

The following observation is crucial: Given an eigenpair (vc, λc) of the generalized
eigenvalue problem on the coarse grid

Dcvc = λcP
HPvc,

we observe that (Pvc, λc) solves the constrained eigenvalue problem

find (v, λ) with v ∈ range(P ) s.t. PH (Dv − λv) = 0

on the fine grid. This observation allows to use the coarse grid system as a source
of information about the eigenvectors with small eigenvalues of the fine grid system.
Computing eigenvectors with small λc on the coarse grid is cheaper than on the fine
grid, and applying a few iterations of the smoother to the lifted vectors Pvc yields
useful test vectors rich in components belonging to the near kernel of the fine grid
system. As we will see, the setup process used in the “inexact deflation” approach
from [41], explained in the next section, can also be interpreted as a bootstrap-type
setup, where instead of using an exact solution to the coarse grid eigenproblem only
approximations are calculated.
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4. Multigrid and Inexact Deflation. A hierarchical approach for solving the
Wilson Dirac equation (1.1), which lately received attention in the lattice QCD com-
munity, was proposed in [41]. It is a combination of what is called “inexact deflation”
with an SAP preconditioned generalized conjugate residuals (GCR) method. The pa-
per [41] does not relate its approach to the existing multigrid literature. The purpose
of this section is to recast the formulations from [41] into established terminology
from algebraic multigrid theory and to explain the limitations of the overall method
from [41] which composes its multigrid ingredients in a non-optimal manner. We also
explain how the setup employed in [41] to construct the “inexact deflation subspace”
(i.e., the test vectors) can be viewed and used as an approximate bootstrap setup in
the sense of section 3.4.

4.1. Inexact Deflation. The inexact deflation subspace constructed in [41] is
the range of a linear operator P which resembles the definition of aggregation based
interpolation from (3.3). As in the aggregation-based construction it uses a set of
test vectors v1, . . . , vN which are “chopped” up over aggregates (called subdomains
in [41]) to obtain the locally supported columns of P . These aggregates are not Γ5-
compatible, so the Γ5-symmetry is not preserved on the coarse grid operatorDc which
is obtained as Dc = PHDP . Since the inexact deflation approach is not meant to be
recursively extended to a true multilevel method, preserving important properties of
the fine system on the coarse system is of lesser concern. However, within its two-level
framework a (purely algebraic) deflating technique is applied when solving the coarse
system.

Two projections πL, πR are defined in [41] as follows

πL = I −DPD−1
c PH and πR = I − PD−1

c PHD. (4.1)

Clearly, πR is the coarse grid correction introduced in section 3; cf. Lemma 3.3(i). In
the context of inexact deflation these projections and the relation DπR = πLD are
used to decompose the linear system of equations Dz = b as

DπRz = πLb, D(I − πR)z = (I − πL)b.

The second equation can be simplified to (I − πR)z = PD−1
c PHb. Thus the solution

z can be computed as z = πRz + (I − πR)z = χ+ χ′, where

χ′ = PD−1
c PHb

only requires the solution of the coarse grid system Dc and

Dχ = DπRχ = πLb

is the “inexactly deflated” system which in [41] is solved by a right preconditioned
Krylov subspace method. To be specific, the Krylov subspace is built for the operator

DπRM
(ν)
SAP

and the right hand side πLb, and the Krylov subspace method is GCR (general con-
jugate residuals, cf. [47]), a minimum residual approach which automatically adapts

itself to the fact that the preconditioner M
(ν)
SAP is not stationary, see the discussion in

section 2.3.
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4.2. Comparison of Multigrid and Inexact Deflation. Although the ingre-
dients of an aggregation based algebraic multigrid method as described in section 3
and of “inexact deflation” as described in the previous paragraph are the same, their
composition makes the difference. In the multigrid context we combine the SAP
smoothing iteration with the coarse grid correction such that it gives rise to the error
propagator of a V-cycle with ν post smoothing steps

E = (I −M
(ν)
SAPD)(I − PD−1

c PHD) .

Hence we obtain for one iteration of the V-cycle

z ← z + C(ν)r

where z denotes the current iterate and r the current residual b−Dz, and

C(ν) = M
(ν)
SAP + PD−1

c PH −M
(ν)
SAPDPD

−1
c PH = M

(ν)
SAPπL + PD−1

c PH , (4.2)

with the last equality following from the definition of the projectors in (4.1). Using
the multigrid method as a right preconditioner in the context of a Krylov subspace
method, the preconditioner is given by C(ν), and the subspace is built for DC(ν). We
again should use a flexible Krylov subspace method such as flexible GMRES or GCR,
since the smoother MSAP is non-stationary and, moreover, we will solve the coarse
system Dc only with low accuracy using some “inner iteration” in every step. The
important point is that a rough approximation of the coarse grid correction in (4.2),
i.e., the solution of systems with the matrix Dc at only low accuracy, will typically
have only a negligible effect on the quality of the preconditioner, and it will certainly
not hamper the convergence of the iterates towards the solution of the system since
multiplications with the matrixD are done exactly. On the other hand, in the “inexact
deflation” context the exact splitting of the solution z = χ′ + χ with

χ′ = PD−1
c PHb, DπRχ = πLb

requires the same final accuracy for both χ′ and χ. Therefore, when computing χ′, the
coarse grid system has to be solved with high accuracy. More importantly, D−1

c also
appears in πR which is part of the “deflated” matrix DπR in the system for χ. In the
inexact deflation context, this system is solved using SAP as a preconditioner. While
we can allow for a flexible and possibly inexact evaluation of the preconditioner, the
accuracy with which we evaluate the non-preconditioned matrixDπR in every step will
inevitably affect the accuracy attainable for χ. As a consequence, in each iteration
we have to solve the system with the matrix Dc arising in πR with an accuracy
comparable with the accuracy at which we want to obtain χ (although the accuracy
requirements could, in principle, be somewhat relaxed as the iteration proceeds due
to results from [50, 55]).

The difference of the two approaches is now apparent. In the multigrid context we
are allowed to solve the coarse system with low accuracy, in inexact deflation we are
not. Since the coarse grid system is still a large system, the work to solve it accurately
will by far dominate the computational cost in each iteration in inexact deflation. In
the multigrid context we can solve at only low accuracy without noticeably affecting
the quality of the preconditioner, thus substantially reducing the computational cost
of each iteration. Moreover, such a low accuracy solution can be obtained even more
efficiently by a recursive application of the two-grid approach, resulting in a true
multigrid method. For a more detailed analysis of the connection between deflation
methods (including inexact deflation) and multigrid approaches we refer to [33, 45, 53].
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Algorithm 4.1: Inexact deflation setup – IDsetup(ninv ,ν) as used in [41]

1 Let v1, . . . , vN ∈ Cn be random test vectors
2 for η = 1 to 3 do

3 for j = 1 to N do

4 vj ←M
(η)
SAPvj

5 for η = 1 to ninv do

6 (re-)construct P and Dc from current v1, . . . , vN
7 for j = 1 to N do

8 vj ← (M
(ν)
SAPπL + PD−1

c PH)vj
9 vj ←

vj
||vj ||

4.3. Adaptivity in the Setup of Inexact Deflation. To set up the inex-
act deflation method we need a way to obtain test vectors to construct the inexact
deflation operators. Once these vectors are found the method is completely defined
(see section 4.1). In analogy to the discussion of adaptive algebraic multigrid in sec-
tions 3.3 and 3.4, these test vectors should contain information about the eigenvectors

belonging to small eigenvalues of the operator DM
(ν)
SAP , the preconditioned system.

Though the setup proposed in [41] is similar in nature to the one described in
section 3.3, it differs in one important way. Instead of working on the homogeneous
equation Dψ = 0 with a random initial guess to obtain the test vectors, it starts with
a set of random test vectors ψj and approximately computes D−1ψj using SAP. The
(approximate) multiplication with D−1 will amplify the components of ψ belonging
to the near kernel. These new vectors are now used to define P (and Dc), yielding an
inexact deflation method which can again be used to approximately compute D−1ψj

giving new vectors for P . The whole process is repeated several times; see Algo-
rithm 4.1 for a detailed description where a total of ninv of these cycles is performed.

The update vj ← (M
(ν)
SAPπL + PD−1

c PH)vj in line 8 of the algorithm is equivalent to
the application of the V-cycle iteration matrix C(ν) (cf. (4.2)). It can be interpreted
as one step of an iteration to solve Dv = vj with initial guess 0 and iteration matrix
C(ν).

This update of the test vectors can also be viewed in terms of the bootstrap AMG

setup outlined in section 3.4. While the first part of the update, M
(ν)
SAPπLvj , is the

application of a coarse grid correction followed by smoothing, i.e., a test to gauge the
effectiveness of the method (cf. section 3.3), the second part of the update, PD−1

c PHvj
is in range(P ). In contrast to the bootstrap methodology where an update in range(P )
is obtained by interpolating eigenvectors with small eigenvalues of Dc, in the inexact
deflation variant these “optimal” vectors are only approximated.

5. DD-αAMG. We now have all the ingredients available to describe our do-
main decomposition/aggregation based adaptive algebraic multigrid (DD-αAMG)
method for the Wilson Dirac operator (1.1).

As its smoother we take M
(ν)
SAP , i.e., we perform ν iterations of red-black Schwarz

as formulated in (2.9). Like ν, the underlying block decomposition of the lattice L is
a parameter to the method which we will specify in the experiments.

The coarse system Dc is obtained as Dc = PHDP , where P is an aggregation
based prolongation obtained during the adaptive setup phase. The aggregates are
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from a standard aggregation according to Definition 3.4, implying that it is in par-
ticular lattice-block based and Γ5-compatible. Parameters of the aggregation are the
underlying block decomposition of L (which does not necessarily match the one under-
lying the SAP smoother) and the test vectors v1, . . . , vN upon which P is built. The
coarse grid matrix Dc inherits all of the important properties of D, cf. Lemma 3.3.

We combine the smoothing iteration and the coarse grid correction into a standard
V -cycle with no pre- and ν steps of post smoothing so that the iteration matrix of
one V -cycle is given by C(ν) from (4.2). Instead of using iterations with the V -cycle
as a stand-alone solver, we run FGMRES, the flexible GMRES method (cf. [47]) with
one V -cycle used as a (right) preconditioner.

It remains to specify how we perform the adaptive setup yielding the test vectors
v1, . . . , vN . Extensive testing showed that a modification of the inexact deflation setup
(Algorithm 4.1) is the most efficient. The modification is a change in the update of
the vectors vj in the second half. Instead of doing one iteration with C(ν) and initial
guess 0 to approximately solve Dv = vj , we use the currently available vector vj as
our initial guess, see Algorithm 5.1.

Algorithm 5.1: DD-αAMG-setup(ninv , ν)

1 perform Algorithm 4.1 with line 8 replaced by

2 vj ← vj + C(ν)(vj −Dvj) {= C(ν)vj + (I − C(ν)D)vj}

6. Numerical Results. We implemented the DD-αAMG method in the pro-
gramming language C using the parallelization interface of MPI. The numerical tests
focus mainly on a two-grid version of our code. As most of the work is spent on the
coarse grid, a recursive extension of the two-grid method to more levels is attrac-
tive and we thus also show some results of a preliminary version of a true multigrid
DD-αAMG implementation.

Our code is optimized to a certain extent, but certainly not to the extreme. As is
customary in lattice QCD computations, we use a mixed precision approach where we
perform the V -cycle of the preconditioner in single precision. Low level optimization
(e.g., making use of the SSE-registers on Intel/AMD architectures) has not been
considered, yet. All Krylov subspace methods (FGMRES, BiCGStab, GCR, CG)
have been implemented in a common framework with the same degree of optimization
to allow for a standardized comparison of computing times. This is particularly
relevant when we compare timings with BiCGStab as well as with the multigrid
method introduced in [4, 14, 44]. We also include a comparison with the inexact
deflation approach, where an efficient implementation is publicly available.

A commonly used technique in lattice QCD computations is odd-even precondi-
tioning. A lattice site x is called even if x1+x2+x3+x4 is even, else it is called odd.
Due to the nearest neighbor coupling, the Wilson Dirac operator has the form

D =

(

Dee Deo

Doe Doo

)

,

if we order all even sites first. Herein, Dee and Doo are block diagonal with 12×12 di-
agonal blocks. Instead of solving a system with D we can solve the corresponding sys-
tem for the odd lattice sites given by the Schur complement DS = Doo−DoeD

−1
ee Deo

and then retrieve the solution at the even lattice sites, cf. [44]. The inverse D−1
ee
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is pre-computed once for all, and the operator DS is applied in factorized form. A
matrix-vector multiplication with DS thus requires the same work as one with D while
the condition of DS improves over that of D. Typically, this results in a gain of 2− 3
in the number of iterations and execution time. Within BiCGStab we use odd-even
preconditioning for D. In all multigrid approaches we use odd-even preconditioned
restarted GMRES with a restart length of 30 when we solve the coarse system involv-
ing Dc. We implemented all odd-even preconditioned operators similarly in spirit to
what was proposed for the Wilson Dirac operator in [36].

parameter default

setup number of iterations ninv 6
number of test vectors N 20
size of lattice-blocks for aggregates 44

coarse system relative residual tolerance 5 · 10−2

(stopping criterion for the coarse system)(∗)

solver restart length of FGMRES nkv 25
relative residual tolerance (stopping criterion) tol 10−10

smoother number of post smoothing steps(∗) ν 2

size of lattice-blocks in SAP(∗) 44

number of minimal residual (MR) iterations to
solve the local systems (2.8) in SAP(∗) 4

Table 6.1

Parameters for the DD-αAMG two-level method. (∗) : same in solver and setup

Table 6.1 summarizes the default parameters used for DD-αAMG in our experi-
ments. Besides those discussed in section 5, the table also gives the stopping criterion
used for the solves with the coarse system Dc (the initial residual is to be decreased by
a factor of 20) and the stopping criterion for the entire FGMRES iteration (residual to
be decreased by a factor of 1010). In each SAP iteration we have to (approximately)
solve the local systems (2.8). Instead of requiring a certain decrease in the residual
we here fix the number of iterative steps (to 4). The iterative method we use here
is the odd-even preconditioned minimal residual method MR, i.e., restarted GMRES
with a restart length of 1, where each iterative step is particularly cheap.

For the various configurations and respective matrices we found that this default
set of parameters yields a well performing solver, with only little room for further
tuning. The size of the lattice-blocks (44) fits well with all lattice sizes occurring in
practice, where Nt and Ns are multiples of 4. The number of setup iterations, ninv , is
the only one of these parameters which should be tuned. It will depend on how many
systems we have to solve, i.e., how many right hand sides we have to treat. When
ninv is increased, the setup becomes more costly, while, at the same time, the solver
becomes faster. Thus the time spent in the setup has to be balanced with the number
of right hand sides, and we will discuss this in some detail in section 6.2. The default
ninv = 6 given in Table 6.1 should be regarded as a good compromise.

The configurations we used are listed in Table 6.2. In principle the pion mass
mπ and the lattice spacing (not listed) determine the condition of the respective
matrix, e.g., the smaller mπ, the more ill-conditioned the respective matrix is. The
physical pion mass is mπphys

= 135 MeV which is taken on by the configurations 4
and 5. The conditioning of the matrices is indicated by the iteration count of CGNR,
the CG method applied to the normal equations DHDψ = DHb (without odd-even
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id lattice size pion mass CGNR shift clover provided by
Nt ×N

3
s mπ [MeV] iterations m0 term csw

1 48× 163 250 7,055 −0.095300 1.00000 BMW-c [23, 24]
2 48× 243 250 11,664 −0.095300 1.00000 BMW-c [23, 24]
3 48× 323 250 15,872 −0.095300 1.00000 BMW-c [23, 24]
4 48× 483 135 53,932 −0.099330 1.00000 BMW-c [23, 24]
5 64× 643 135 84,207 −0.052940 1.00000 BMW-c [23, 24]
6 128× 643 270 45,804 −0.342623 1.75150 CLS [18, 26]

Table 6.2

Configurations used together with their parameters. For details about their generation we refer
to the references. Pion masses rounded to steps of 5 MeV.

preconditioning), in which we required the norm of the residual r = b−Dψ to decrease
by a factor of 1010.

We ran DD-αAMG on the various configurations, analyzed the behavior of the
setup routine and performed different scaling tests. All results have been computed on
the Juropa machine at Jülich Supercomputing Centre, a cluster with 2,208 compute
nodes, each with two Intel Xeon X5570 (Nehalem-EP) quad-core processors. Unless
stated otherwise the icc-compiler with the optimization flags -O3 -ipo -axSSE4.2

-m64 was used.

6.1. Comparison with BiCGStab. First we compare a mixed precision2, odd-
even preconditioned implementation of BiCGStab with the DD-αAMG method using
the standard parameter set for a 644 configuration at physical pion mass which rep-
resents an ill-conditioned linear system with n = 201,326,592.

BiCGStab DD-αAMG speed-up factor coarse grid

setup time 22.9s
solve iter 13,450 21 3,716(∗)

solve time 91.2s 3.15s 29.0 2.43s
total time 91.2s 26.1s 3.50

Table 6.3

BiCGStab vs. DD-αAMG with default parameters (Table 6.1) on configuration 5 (Table 6.2),
8,192 cores, (∗) : coarse grid iterations summed up over all iterations on the fine grid.

The results reported in Table 6.3 show that we obtain a speed-up factor of 3.5
over BiCGStab with respect to the total timing. Excluding the setup time, we gain
a factor of 29. The right most column shows that in this ill-conditioned case about
77% of the solve time of DD-αAMG goes into computations on the coarse grid.

6.2. Setup Evaluation. Lattice QCD computations are dominated by two ma-
jor tasks: generating configurations within the Hybrid Monte-Carlo (HMC) algorithm
[35] and evaluating these configurations, i.e., calculating observables. Both tasks re-
quire solutions of the lattice Dirac equation.

The HMC generates a sequence of stochastically independent configurations. The
configuration is changed in every step, and the Wilson Dirac equation has to be solved

2The mixed precision implementation uses double precision flexible GMRES(25) preconditioned
by 50 steps of single precision, odd-even preconditioned BiCGStab
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only once per configuration. Thus HMC requires a new setup—or at least an update—
for the interpolation and coarse grid operator in every step. Therefore the costs of
setup/update and solve have to be well-balanced.

The calculation of observables typically requires several solves for a single config-
uration. Therefore one would be willing to invest more time into the setup in order
to obtain a better solver.

number of average average lowest highest average average
setup setup iteration iteration iteration solver total

steps ninv timing count count count timing timing

1 2.08 149 144 154 6.42 8.50
2 3.06 59.5 58 61 3.42 6.48
3 4.69 34.5 33 36 2.37 7.06
4 7.39 27.2 27 28 1.95 9.34
5 10.8 24.1 24 25 1.82 12.6
6 14.1 23.0 23 23 1.89 16.0
8 19.5 22.0 22 22 2.02 21.5
10 24.3 22.5 22 23 2.31 26.6

Table 6.4

Evaluation of DD-αAMG-setup(ninv , 2) cf. Algorithm 5.1, 484 lattice, ill-conditioned configu-
ration (Table 6.2: id 4), 2,592 cores, averaged over 20 runs.

Table 6.4 illustrates how the ratio between setup and solve can be balanced de-
pending on the amount of right hand sides. In this particular case 2 steps in the setup
might be the best choice if only a single solution of the system is needed (minimal
time for setup + 1 solve). For many right hand sides, where the time spent in the
solver dominates, 5 steps in the setup might be the best choice. Doing up to 7 steps
can lower the iteration count of the solver even further, but the better the test vectors
approximate the near kernel, the more ill-conditioned the coarse system becomes, i.e.,
lowering the iteration count of the solver means increasing the iteration count on the
coarse system.

The numbers shown have been averaged over 20 runs, because the measurements
vary due to the choice of random initial test vectors. The fourth and the fifth column
of Table 6.4 show that the fluctuations in the iteration count of the solver are modest.
For ninv ≥ 4 the fluctuations almost vanish completely.

Table 6.5 gives the iteration count of BiCGStab and DD-αAMG for a set of
6 stochastically independent configurations from a single HMC simulation. The
BiCGStab iteration count shows a clear dependence on the gauge fields just as DD-
αAMG for small values of ninv . For ninv ≥ 4 the iteration count varies only marginally.

6.3. Scaling Tests. We now study the scaling behavior of the solver as a func-
tion of the mass parameter and the system size. While the former determines the
condition number of the Wilson Dirac operator, the latter has an effect on the density
of the eigenvalues. In particular, increasing the volume leads to a higher density of
small eigenvalues [7]. In a weak parallel scaling test we also analyze the performance
as a function of the number of processors used.

Mass Scaling. For this study we used a 484 lattice configuration. We ran the
setup once for the mass parameterm0 = −0.09933 in the Wilson Dirac operator (2.4).
This represents the most ill-conditioned system where the pion mass with 135 MeV
is physical. We then used the interpolation operator obtained for this system for a
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BiCGStab iteration counts

conf 1 conf 2 conf 3 conf 4 conf 5 conf 6
7,950 8,350 9,550 8,600 8,100 9,950

DD-αAMG iteration counts

ninv conf 1 conf 2 conf 3 conf 4 conf 5 conf 6
1 161 208 175 183 181 272
2 62 75 67 67 64 85
3 34 37 36 37 35 39
4 27 28 28 29 27 29
5 24 25 25 25 24 25
6 23 23 23 24 23 23

Table 6.5

Configuration dependence study of BiCGStab and DD-αAMG with DD-αAMG-setup(ninv , 2)
for 6 different, ill-conditioned configurations on 484 lattices, (Table 6.2: id 4), 2,592 cores.

variety of other mass parameters, where we then ran the DD-αAMG solver without
any further setup.

BiCGStab DD-αAMG coarse system

m0 iteration solver iteration solver �iteration timing
count timing count timing count (% solve time)

−0.04933 400 2.60s 17 0.59s 11.2 0.13s (22.0)
−0.06933 600 4.10s 19 0.72s 15.4 0.20s (27.8)
−0.08933 1,550 9.82s 20 0.92s 28.6 0.37s (40.2)
−0.09133 1,700 10.6s 21 1.04s 33.4 0.47s (45.2)
−0.09333 2,250 13.7s 21 1.13s 39.7 0.55s (48.7)
−0.09533 2,850 17.4s 22 1.28s 46.9 0.68s (53.1)
−0.09733 3,750 23.7s 23 1.48s 56.5 0.84s (56.8)
−0.09933 6,250 42.0s 24 1.89s 79.3 1.22s (64.5)

Table 6.6

Mass scaling of DD-αAMG for ninv = 5, 484 lattice (Table 6.2: id 4), 2,592 cores.

In Table 6.6 we compare BiCGStab and DD-αAMG with respect to the timing
for one right hand side and the scaling with the mass parameter m0. For the smallest
m0, DD-αAMG is 22.2 times faster than BiCGStab and even for the largest value
of m0 there remains a factor of 3.9. We also see that the two methods scale in a
completely different manner. The BiCGStab solve for the smallest m0 is 18.5 times
more expensive than the solve for the largest one. On the other hand the DD-αAMG
timings just increase by a factor of 3.2, the iteration count even only by a factor of
1.4. The coarse grid iteration count, however, increases by a factor of 8.0.

System Size Scaling. In Table 6.7 we report tests on the scaling with the
system size for constant mass parameter and (physical) lattice spacing. We again
compare DD-αAMG with BiCGStab. The iteration count of BiCGStab for Nt ×N

3
s

lattices appears to scale with Ns and thus almost doubles from Ns = 16 to Ns = 32
whereas for DD-αAMG we observe an almost constant iteration count and time.

Weak Scaling. For a weak scaling test we ran 100 iterations of DD-αAMG with
ninv = 5 in the setup on lattices ranging from size 164 on a single node (8 cores/node)
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BiCGStab DD-αAMG

lattice size iteration solver setup iteration solver
Nt ×N

3
s count timing timing count timing

48× 163 1,550 7.03s 6.59s 20 0.89s
48× 243 2,150 10.7s 7.29s 20 0.83s
48× 323 2,600 13.1s 7.15s 21 0.92s

Table 6.7

Lattice size scaling of DD-αAMG, ninv = 6 setup iterations, lattices generated with the same
mass parameter and lattice spacing (Table 6.2: id 1, 2 and 3), local lattice size 4× 83.
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Fig. 6.1. Weak scaling test of DD-αAMG. The lattice size is increased with the number of
processes, keeping the local lattice size per process fixed to 16 · 83.

to 1282 · 642 on 1,024 nodes with 16 · 83 local lattice size on each core, cf. Figure 6.1.

For the scaling study we fixed the number of iterations on the coarse grid to
be exactly 50 steps of odd-even preconditioned GMRES so that we always have the
same number of 100 MPI Allreduce operations. In Figure 6.1 we see the usual log(p)
dependence, p the number of processes, caused by global communication, together
with an exceptional increase when going from 512 to 1,024 processes. Additional
measurements show that this is due to the fact that the MPI Allreduce operations
take substantially longer for 1,024 processors, a machine-specific feature of Juropa.
Apart from this, our method scales well up to 8,192 processes.

6.4. Comparison with the Inexact Deflation Method. The inexact defla-
tion code of [41] is publicly available [38]. We now compare its performance with
DD-αAMG.3

We have chosen the parameters of both methods equally except for the number of
post-smoothing steps ν. For the inexact deflation method ν = 5 and for DD-αAMG
ν = 2 turned out to provide the fastest solver, respectively. We used the gcc compiler
with the -O3 flag and hand coded low-level SSE optimization for the inexact deflation
method and the icc compiler with the optimization flags -O3 -ipo -axSSE4.2 -m64

for the DD-αAMG method. These compiler options provide the optimal choices for

3Based on the preprint [27] of the present paper, the inexact deflation method has been upgraded
in the spirit of DD-αAMG (cf. [39]). The new version is termed “with inaccurate projection”. We
here compare with the older, “exact projection” version.
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the respective codes. Since our focus is on algorithmic improvements we did not
work on customized SSE optimization for DD-αAMG, which should, in principle, give
additional speed-up. The following results were produced on the same 484 lattice as
in sections 6.2 and 6.3 and on a 128× 643 lattice (Table 6.2, id 6).

Inexact deflation DD-αAMG

setup setup iteration solver setup iteration solver
steps ninv timing count (coarse) timing timing count (coarse) timing

1 1.01s 233 (82) 10.1s 2.08s 149 (24) 6.42s
2 1.87s 155 (145) 10.2s 3.06s 59 (46) 3.42s
3 2.69s 108 (224) 9.96s 4.69s 35 (63) 2.37s
4 3.43s 84 (301) 9.25s 7.39s 27 (68) 1.95s
5 6.14s 70 (320) 7.50s 10.8s 24 (75) 1.82s
6 5.68s 63 (282) 5.21s 14.1s 23 (84) 1.89s
8 7.71s 54 (267) 4.12s 19.5s 22 (99) 2.02s
10 10.1s 49 (265) 3.62s 24.3s 22 (116) 2.31s

Table 6.8

Comparison of DD-αAMG and inexact deflation, coarse system solver tolerance 10−12 and
ν = 5 in inexact deflation, ill-conditioned system on a 484 lattice (Table 6.2: id 4), 2,592 cores.

Table 6.8 compares inexact deflation and DD-αAMG for a whole range for ninv .
We see that ninv = 5 provides the fastest DD-αAMG solver which is two times faster
than the fastest inexact deflation solver which requires ninv = 10. For the calculation
of observables where the same system has to be solved for several right-hand-sides,
this factor of two directly carries over to the total computation time since the setup
cost then is negligible. When looking at combined times for setup and solve for one
right hand side, ninv = 2 is best for DD-αAMG, where it takes 6.48s. The best choice
for inexact deflation is ninv = 6 requiring 10.89s.

We also see that except for very small values for ninv , the number of iterations
required in DD-αAMG is less than half of that in inexact deflation. The numbers in
parenthesis denote the average number of coarse solver iterations in each iteration of
the respective method. For DD-αAMG the number of iterations on the coarse grid
increases with the work spent in the setup. Hence, the lowest DD-αAMG-iteration
count does not necessarily provide the fastest solver in the two grid setting. In in-
exact deflation the number of iterations on the coarse grid is not that clearly tied to
ninv . Since in inexact deflation the coarse system must be solved very accurately, the
number of iterations needed to solve the coarse grid system is higher than in DD-
αAMG. It is only moderately (a factor of 2 to 4) higher, though, because the code
from [38] uses an additional adaptively computed preconditioner for the GCR itera-
tions on the coarse system, whereas we use the less efficient odd-even preconditioning
in DD-αAMG.

For the same number of test vectors, DD-αAMG produces a coarse system which is
twice as large (and contains four times as many non zeros in the coarse grid operator)
as that of inexact deflation with the benefit of preserving the Γ5 structure on the
coarse grid. The DD-αAMG coarse grid system seems to be more ill-conditioned—an
indication that the important aspects of the fine grid system are represented on the
coarse grid—and the resulting coarse grid correction clearly lowers the total iteration
count more efficiently and thus speeds up the whole method.

An ill-conditioned coarse grid system offers a potential for substantial improve-
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ments when passing from two-grid to multigrid. In Figure 6.2 we therefore report
results of a study with a yet experimental version of our multigrid code. It compares
the solver times for odd-even preconditioned BiCGStab with DD-αAMG using 2, 3
and 4 levels for different choices of the mass parameter m0. The gain for going from
2 to 3 levels is very noticeable; and for small values of m0, corresponding to the phys-
ically interesting regimes, we observe an improvement of a factor of 2.5 to 3. Using
more levels is a feature which is not available in the inexact deflation code.
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Fig. 6.2. Mass scaling of 2, 3 and 4 level DD-αAMG, 644 lattice (Table 6.2: id 5), restart length
nkv = 10, 128 cores. Here, mud is the average light quark mass (at and above which most of the
current simulations are performed), assuming a common mass for the up and the down quark. Some
recent simulations, e.g., [10, 21, 25], already distinguish the mass of the up and the down quark, and
this will become more important in the near future. Then the regime close to mu becomes relevant.

Inexact deflation DD-αAMG speed-up factor

smooth iter 5 2
setup iter 5 3
setup time 10.9s 7.85s 1.39
solve iter 31 45
solve time 8.63s 5.81s 1.49
total time 19.5s 13.6s 1.43

Table 6.9

Comparison of DD-αAMG with inexact deflation on an ill-conditioned system on a 128 × 643

lattice (Table 6.2, id 6), same parameters as in Table 6.8, 8,192 cores.

Finalizing our discussion, we compare in Table 6.9 inexact deflation and DD-
αAMG for another configuration typical for many recent lattice QCD computations.
Configuration 6 differs from the other configurations in Table 6.2 in the way it was
generated, resulting in quite different discretization effects. Again we took the default
parameter set, but now with relatively cheap setup phases. This results in a gain factor
of more than 1.4 for setup and solve in DD-αAMG against inexact deflation. Still
55% of the execution time is spent in coarse system solves in DD-αAMG.

6.5. Comparison with GCR-Smoothing. The general applicability of alge-
braic multigrid ideas to lattice QCD systems was first considered in [4, 14, 44] where
the resulting method is simply called “AMG”, a terminology that we keep for the
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following discussion. The method has been implemented as part of the QOPQDP
library, see [43], which is publicly available. As we explained in sections 3.2, 3.3
and 3.4 AMG motivated many of the choices in DD-αAMG, particularly preservation
of Γ5-symmetry and aggregation based interpolation.

There are two major differences to the method presented here. One is the choice
of the smoothing iteration. While DD-αAMG uses some steps of SAP, which can be
regarded as a “block smoothing”, AMG uses “point smoothing”, i.e., some steps of
standard (odd-even preconditioned) GCR. The other important difference is the setup.
Different variants are considered in [3, 4, 14, 44], and the QOPQDP code proceeds
by computing the test vectors as quite precise approximations to eigenvectors. They
are obtained one at a time by applying a sufficient number of BiCGStab iterations,
at the same time keeping the current vector orthogonal to all previous ones.

Table 6.10 reports a comparison of DD-αAMG with AMG for two of our config-
urations. We compared different choices of parameters with our standard parame-
ter settings for DD-αAMG. We stopped the iterations when the initial residual was
decreases by a factor of 10−5 (instead of 10−10), the reason for this being that in
QOPQDP configurations are represented in single precision, only. For the default
choice of parameters in AMG we see that the setup is substantially more costly (fac-
tors between 2 and 4 in time), while the number of iterations for each system solve
is slightly less for DD-αAMG. We can make the effort in the AMG setup comparable
to that of DD-αAMG by reducing the limit on the maximum number of BiCGStab
iterations to be performed on each test vector (msi), but then the number of itera-
tions for each solve increases in AMG and solve times become always larger than with
DD-αAMG. The domain decomposition smoother involves less global communication
than GCR, which turns out to have a substantial influence on the solve times for a
higher number of cores. For example, on 8,192 cores, the solve times are 2 to 3 times
smaller than in AMG.

id 5, 128 cores id 6, 256 cores
AMG-d AMG-20 DD-αAMG AMG-d AMG-10 DD-αAMG

setup time 2424s 826s 896s 2464s 607s 656s
solve iter 14 22 10 13 21 11
solve time 45.4s 66.0s 57.1s 36.5s 50.4s 37.3s

id 5, 8192 cores id 6, 8192 cores
AMG-d AMG-40 DD-αAMG AMG-d AMG-20 DD-αAMG

setup time 52.3s 24.6s 27.7s 89.9s 29.1s 32.3s
solve iter 14 16 10 13 16 11
solve time 4.75s 5.51s 1.82s 3.49s 3.43s 1.86s

Table 6.10

Comparison of DD-αAMG and AMG. AMG-d uses default parameter settings, AMG-k sets
msi = k so that setup time is comparable to DD-αAMG. SSE optimization switched off in AMG.
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[22] S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg,

T. Kurth, L. Lellouch, T. Lippert, K. Szabo, and G. Vulvert, Ab initio determi-
nation of light hadron masses, Science, 322 (2008), pp. 1224–1227.
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