000154942 001__ 154942
000154942 005__ 20210129213958.0
000154942 0247_ $$2doi$$a10.1142/S0129183114300036
000154942 0247_ $$2ISSN$$a1793-6586
000154942 0247_ $$2ISSN$$a0129-1831
000154942 0247_ $$2WOS$$aWOS:000340603000001
000154942 0247_ $$2altmetric$$aaltmetric:2010196
000154942 037__ $$aFZJ-2014-04152
000154942 082__ $$a530
000154942 1001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b0$$eCorresponding Author$$ufzj
000154942 245__ $$aEvent-based simulation of quantum physics experiments
000154942 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c2014
000154942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407767344_30536
000154942 3367_ $$2DataCite$$aOutput Types/Journal article
000154942 3367_ $$00$$2EndNote$$aJournal Article
000154942 3367_ $$2BibTeX$$aARTICLE
000154942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154942 3367_ $$2DRIVER$$aarticle
000154942 520__ $$aWe review an event-based simulation approach which reproduces the statistical distributions of wave theory not by requiring the knowledge of the solution of the wave equation of the whole system but by generating detection events one-by-one according to an unknown distribution. We illustrate its applicability to various single photon and single neutron interferometry experiments and to two Bell-test experiments, a single-photon Einstein–Podolsky–Rosen experiment employing post-selection for photon pair identification and a single-neutron Bell test interferometry experiment with nearly 100% detection efficiency.
000154942 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000154942 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154942 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b1
000154942 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S0129183114300036$$gVol. 25, no. 08, p. 1430003 -$$n08$$p1430003 -$$tInternational journal of modern physics / C$$v25$$x1793-6586$$y2014
000154942 909CO $$ooai:juser.fz-juelich.de:154942$$pVDB
000154942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154942 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000154942 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000154942 9141_ $$y2014
000154942 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154942 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154942 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154942 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000154942 920__ $$lyes
000154942 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000154942 980__ $$ajournal
000154942 980__ $$aVDB
000154942 980__ $$aI:(DE-Juel1)JSC-20090406
000154942 980__ $$aUNRESTRICTED