000154942 001__ 154942 000154942 005__ 20210129213958.0 000154942 0247_ $$2doi$$a10.1142/S0129183114300036 000154942 0247_ $$2ISSN$$a1793-6586 000154942 0247_ $$2ISSN$$a0129-1831 000154942 0247_ $$2WOS$$aWOS:000340603000001 000154942 0247_ $$2altmetric$$aaltmetric:2010196 000154942 037__ $$aFZJ-2014-04152 000154942 082__ $$a530 000154942 1001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b0$$eCorresponding Author$$ufzj 000154942 245__ $$aEvent-based simulation of quantum physics experiments 000154942 260__ $$aSingapore [u.a.]$$bWorld Scientific$$c2014 000154942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407767344_30536 000154942 3367_ $$2DataCite$$aOutput Types/Journal article 000154942 3367_ $$00$$2EndNote$$aJournal Article 000154942 3367_ $$2BibTeX$$aARTICLE 000154942 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000154942 3367_ $$2DRIVER$$aarticle 000154942 520__ $$aWe review an event-based simulation approach which reproduces the statistical distributions of wave theory not by requiring the knowledge of the solution of the wave equation of the whole system but by generating detection events one-by-one according to an unknown distribution. We illustrate its applicability to various single photon and single neutron interferometry experiments and to two Bell-test experiments, a single-photon Einstein–Podolsky–Rosen experiment employing post-selection for photon pair identification and a single-neutron Bell test interferometry experiment with nearly 100% detection efficiency. 000154942 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000154942 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000154942 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b1 000154942 773__ $$0PERI:(DE-600)2006526-7$$a10.1142/S0129183114300036$$gVol. 25, no. 08, p. 1430003 -$$n08$$p1430003 -$$tInternational journal of modern physics / C$$v25$$x1793-6586$$y2014 000154942 909CO $$ooai:juser.fz-juelich.de:154942$$pVDB 000154942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000154942 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0 000154942 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000154942 9141_ $$y2014 000154942 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000154942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000154942 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000154942 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000154942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000154942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000154942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000154942 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000154942 920__ $$lyes 000154942 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000154942 980__ $$ajournal 000154942 980__ $$aVDB 000154942 980__ $$aI:(DE-Juel1)JSC-20090406 000154942 980__ $$aUNRESTRICTED