001     154943
005     20240711085642.0
024 7 _ |a 10.1016/j.jeurceramsoc.2014.06.012
|2 doi
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a WOS:000340976200032
|2 WOS
037 _ _ |a FZJ-2014-04153
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Schulze-Küppers, F.
|0 P:(DE-Juel1)129660
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Towards the fabrication of La0.98−xSrxCo0.2Fe0.8O3−δ perovskite-type oxygen transport membranes
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1408695229_5995
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a La0.98-xSrxCo0.2Fe0.8O3-d (LSCF) is a candidate material for use as an oxygen transport membrane (OTM). In this work, fabrication-relevant properties (sintering behaviour, thermal and chemical expansion) of LSCF (x = 0.2, 0.4, 0.6, 0.8) were investigated in order to select the preferred composition for fabricating a thin-film supported membrane able to withstand the thermochemical stresses encountered during manufacturing and operation with simultaneously high oxygen permeation flux. Partial substitution of La by Sr ions in LSCF is beneficial for increasing the oxygen permeation rate, but it causes drawbacks regarding manufacturing and operation. A Sr content of x ≥ 0.6 results in a swelling of the material during sintering, which complicates the manufacturing of thin, leak-free membranes. This swelling is related to oxygen release during heating, combined with the formation of a liquid phase above 1200 °C. Furthermore, an increase in total strain with Sr content is observed. This is caused by the chemical expansion, while there is no significant change in thermal expansion with increasing Sr content. The compositions x = 0.4 and x = 0.6 showed tolerable expansion coefficients as well as adequate sintering behaviour and were therefore selected for the fabrication of thin supported membranes. These supported membranes with a thickness of 30 µm were manufactured by sequential tape casting and characterised regarding microstructure and oxygen flux.
536 _ _ |a 122 - Power Plants (POF2-122)
|0 G:(DE-HGF)POF2-122
|c POF2-122
|f POF II
|x 0
536 _ _ |a GREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524)
|0 G:(EU-Grant)608524
|c 608524
|f FP7-ENERGY-2013-1
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 1
|u fzj
700 1 _ |a Tietz, F.
|0 P:(DE-Juel1)129667
|b 2
|u fzj
700 1 _ |a Bouwmeester, H. J. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Meulenberg, W. A.
|0 P:(DE-Juel1)129637
|b 4
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2014.06.012
|g Vol. 34, no. 15, p. 3741 - 3748
|0 PERI:(DE-600)2013983-4
|n 15
|p 3741 - 3748
|t Journal of the European Ceramic Society
|v 34
|y 2014
|x 0955-2219
856 4 _ |u http://www.sciencedirect.com/science/article/pii/S0955221914003409
856 4 _ |u https://juser.fz-juelich.de/record/154943/files/FZJ-2014-04153.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:154943
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129637
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-112
|2 G:(DE-HGF)POF3-100
|v Energy Efficient Processes
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21