000154949 001__ 154949 000154949 005__ 20240712100826.0 000154949 0247_ $$2doi$$a10.5194/gmdd-7-5087-2014 000154949 0247_ $$2ISSN$$a1991-962X 000154949 0247_ $$2ISSN$$a1991-9611 000154949 0247_ $$2Handle$$a2128/7846 000154949 037__ $$aFZJ-2014-04159 000154949 082__ $$a910 000154949 1001_ $$0P:(DE-HGF)0$$aPommrich, R.$$b0$$eCorresponding author 000154949 245__ $$aTropical troposphere to stratosphere transport of carbon monoxide and long-lived trace species in the Chemical Lagrangian Model of the Stratosphere (CLaMS) 000154949 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2014 000154949 3367_ $$2DRIVER$$aarticle 000154949 3367_ $$2DataCite$$aOutput Types/Journal article 000154949 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520259611_4046 000154949 3367_ $$2BibTeX$$aARTICLE 000154949 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000154949 3367_ $$00$$2EndNote$$aJournal Article 000154949 520__ $$aVariations in the mixing ratio of trace gases of tropospheric origin entering the stratosphere in the tropics are of interest for assessing both troposphere to stratosphere transport fluxes in the tropics and the impact of these transport fluxes on the composition of the tropical lower stratosphere. Anomaly patterns of carbon monoxide (CO) and long-lived tracers in the lower tropical stratosphere allow conclusions about the rate and the variability of tropical upwelling to be drawn. Here, we present a simplified chemistry scheme for the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the simulation, at comparatively low numerical cost, of CO, ozone, and long-lived trace substances (CH4, N2O, CCl3F (CFC-11), CCl2F2 (CFC-12), and CO2) in the lower tropical stratosphere. For the long-lived trace substances, the boundary conditions at the surface are prescribed based on ground-based measurements in the lowest model level. The boundary condition for CO in the free troposphere is deduced from MOPITT measurements (at ≈ 700–200 hPa). Due to the lack of a specific representation of mixing and convective uplift in the troposphere in this model version, enhanced CO values, in particular those resulting from convective outflow are underestimated. However, in the tropical tropopause layer and the lower tropical stratosphere, there is relatively good agreement of simulated CO with in-situ measurements (with the exception of the TROCCINOX campaign, where CO in the simulation is biased low ≈ 10–20 ppbv). Further, the model results are of sufficient quality to describe large scale anomaly patterns of CO in the lower stratosphere. In particular, the zonally averaged tropical CO anomaly patterns (the so called "tape recorder" patterns) simulated by this model version of CLaMS are in good agreement with observations. The simulations show a too rapid upwelling compared to observations as a consequence of the overestimated vertical velocities in the ERA-interim reanalysis data set. Moreover, the simulated tropical anomaly patterns of N2O are in good agreement with observations. In the simulations, anomaly patterns for CH4 and CFC-11 were found to be consistent with those of N2O; for all long-lived tracers, positive anomalies are simulated because of the enhanced tropical upwelling in the easterly phase of the quasi-biennial oscillation. 000154949 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000154949 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1 000154949 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000154949 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1 000154949 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b2 000154949 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b3 000154949 7001_ $$0P:(DE-Juel1)129141$$aPloeger, F.$$b4 000154949 7001_ $$0P:(DE-Juel1)129164$$aVogel, B.$$b5 000154949 7001_ $$0P:(DE-Juel1)156119$$aTao, M.$$b6 000154949 7001_ $$0P:(DE-HGF)0$$aHoppe, C. M.$$b7 000154949 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b8 000154949 7001_ $$0P:(DE-Juel1)129155$$aSpelten, N.$$b9 000154949 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b10 000154949 7001_ $$0P:(DE-HGF)0$$aPumphrey, H.-C.$$b11 000154949 7001_ $$0P:(DE-HGF)0$$aViciani, S.$$b12 000154949 7001_ $$0P:(DE-HGF)0$$aD'Amato, F.$$b13 000154949 7001_ $$0P:(DE-HGF)0$$aVolk, C. M.$$b14 000154949 7001_ $$0P:(DE-HGF)0$$aHoor, P.$$b15 000154949 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b16 000154949 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b17 000154949 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmdd-7-5087-2014$$gVol. 7, no. 4, p. 5087 - 5139$$n4$$p5087 - 5139$$tGeoscientific model development discussions$$v7$$x1991-962X$$y2014 000154949 8564_ $$uhttps://juser.fz-juelich.de/record/154949/files/FZJ-2014-04159.pdf$$yOpenAccess 000154949 8564_ $$uhttps://juser.fz-juelich.de/record/154949/files/FZJ-2014-04159.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000154949 8564_ $$uhttps://juser.fz-juelich.de/record/154949/files/FZJ-2014-04159.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000154949 8564_ $$uhttps://juser.fz-juelich.de/record/154949/files/FZJ-2014-04159.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000154949 8767_ $$92014-10-08$$d2014-10-13$$eAPC$$jZahlung erfolgt$$pgmd-2014-138 000154949 909CO $$ooai:juser.fz-juelich.de:154949$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156119$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b8$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich GmbH$$b9$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b10$$kFZJ 000154949 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich GmbH$$b17$$kFZJ 000154949 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0 000154949 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000154949 9141_ $$y2014 000154949 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000154949 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review 000154949 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000154949 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000154949 920__ $$lyes 000154949 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0 000154949 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000154949 9801_ $$aAPC 000154949 9801_ $$aFullTexts 000154949 980__ $$ajournal 000154949 980__ $$aVDB 000154949 980__ $$aI:(DE-Juel1)IEK-7-20101013 000154949 980__ $$aI:(DE-Juel1)JSC-20090406 000154949 980__ $$aAPC 000154949 980__ $$aUNRESTRICTED 000154949 981__ $$aI:(DE-Juel1)ICE-4-20101013 000154949 981__ $$aI:(DE-Juel1)JSC-20090406