000015496 001__ 15496
000015496 005__ 20200702121556.0
000015496 0247_ $$2DOI$$a10.1088/0266-5611/27/1/015002
000015496 0247_ $$2WOS$$aWOS:000285410100002
000015496 037__ $$aPreJuSER-15496
000015496 041__ $$aeng
000015496 082__ $$a530
000015496 084__ $$2WoS$$aMathematics, Applied
000015496 084__ $$2WoS$$aPhysics, Mathematical
000015496 1001_ $$0P:(DE-Juel1)VDB94577$$aBikowski, J.$$b0$$uFZJ
000015496 245__ $$aDirect numerical reconstruction of conductivities in three dimensions using scattering transforms
000015496 260__ $$aBristol [u.a.]$$bInst.$$c2011
000015496 300__ $$a015002
000015496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000015496 3367_ $$2DataCite$$aOutput Types/Journal article
000015496 3367_ $$00$$2EndNote$$aJournal Article
000015496 3367_ $$2BibTeX$$aARTICLE
000015496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000015496 3367_ $$2DRIVER$$aarticle
000015496 440_0 $$019041$$aInverse Problems$$v27$$x0266-5611$$y1
000015496 500__ $$3POF3_Assignment on 2016-02-29
000015496 500__ $$aThe authors thank D Isaacson and G Boverman for helpful discussions on the spherical harmonics. This material is based upon work supported by the National Science Foundation under grant no 0513509 (JM).
000015496 520__ $$aA direct three-dimensional EIT reconstruction algorithm based on complex geometrical optics solutions and a nonlinear scattering transform is presented and implemented for spherically symmetric conductivity distributions. The scattering transform is computed both with a Born approximation and from the forward problem for purposes of comparison. Reconstructions are computed for several test problems. A connection to Calderon's linear reconstruction algorithm is established, and reconstructions using both methods are compared.
000015496 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000015496 588__ $$aDataset connected to Web of Science
000015496 650_7 $$2WoSType$$aJ
000015496 7001_ $$0P:(DE-HGF)0$$aKnudsen, K.$$b1
000015496 7001_ $$0P:(DE-HGF)0$$aMueller, J.L.$$b2
000015496 773__ $$0PERI:(DE-600)1477292-9$$a10.1088/0266-5611/27/1/015002$$gVol. 27, p. 015002$$p015002$$q27<015002$$tInverse problems$$v27$$x0266-5611$$y2011
000015496 8567_ $$uhttp://dx.doi.org/10.1088/0266-5611/27/1/015002
000015496 909CO $$ooai:juser.fz-juelich.de:15496$$pVDB$$pVDB:Earth_Environment
000015496 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000015496 9141_ $$y2011
000015496 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000015496 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000015496 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000015496 970__ $$aVDB:(DE-Juel1)128463
000015496 980__ $$aVDB
000015496 980__ $$aConvertedRecord
000015496 980__ $$ajournal
000015496 980__ $$aI:(DE-Juel1)IBG-3-20101118
000015496 980__ $$aUNRESTRICTED