000154961 001__ 154961
000154961 005__ 20230426083111.0
000154961 0247_ $$2doi$$a10.1103/PhysRevB.90.064406
000154961 0247_ $$2ISSN$$a0163-1829
000154961 0247_ $$2ISSN$$a1095-3795
000154961 0247_ $$2ISSN$$a1550-235X
000154961 0247_ $$2ISSN$$a0556-2805
000154961 0247_ $$2ISSN$$a1098-0121
000154961 0247_ $$2WOS$$aWOS:000339994200005
000154961 0247_ $$2Handle$$a2128/9123
000154961 0247_ $$2altmetric$$aaltmetric:2346455
000154961 037__ $$aFZJ-2014-04170
000154961 082__ $$a530
000154961 1001_ $$0P:(DE-Juel1)143632$$aLong, Nguyen H.$$b0$$eCorresponding Author$$ufzj
000154961 245__ $$aSpin relaxation and spin Hall transport in 5d transition-metal ultrathin films
000154961 260__ $$aCollege Park, Md.$$bAPS$$c2014
000154961 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407761763_30532
000154961 3367_ $$2DataCite$$aOutput Types/Journal article
000154961 3367_ $$00$$2EndNote$$aJournal Article
000154961 3367_ $$2BibTeX$$aARTICLE
000154961 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000154961 3367_ $$2DRIVER$$aarticle
000154961 520__ $$aThe spin relaxation induced by the Elliott-Yafet mechanism and the extrinsic spin Hall conductivity due to the skew scattering are investigated in 5d transition-metal ultrathin films with self-adatom impurities as scatterers. The values of the Elliott-Yafet parameter and of the spin-flip relaxation rate reveal a correlation with each other that is in agreement with the Elliott approximation. At 10-layer thickness, the spin-flip relaxation time in 5d transition-metal films is quantitatively reported about few hundred nanoseconds at atomic percent. This time scale is one and two orders of magnitude shorter than the values in Au and Cu thin films, respectively. The anisotropy effect of the Elliott-Yafet parameter and of the spin-flip relaxation rate with respect to the direction of the spin-quantization axis in relation to the crystallographic axes is also analyzed. We find that the anisotropy of the spin-flip relaxation rate is enhanced due to the Rashba surface states on the Fermi surface, reaching values as high as 97% in 10-layer Hf(0001) film or 71% in 10-layer W(110) film. Finally, the spin Hall conductivity as well as the spin Hall angle due to the skew scattering off self-adatom impurities are calculated using the Boltzmann approach. Our calculations employ a relativistic version of the first-principles full-potential Korringa-Kohn-Rostoker Green function method.
000154961 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000154961 542__ $$2Crossref$$i2014-08-07$$uhttp://link.aps.org/licenses/aps-default-license
000154961 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000154961 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Phivos$$b1$$ufzj
000154961 7001_ $$0P:(DE-Juel1)131065$$aZimmermann, Bernd$$b2$$ufzj
000154961 7001_ $$0P:(DE-Juel1)130526$$aBauer, David$$b3$$ufzj
000154961 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b4$$ufzj
000154961 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b5$$ufzj
000154961 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.90.064406$$bAmerican Physical Society (APS)$$d2014-08-07$$n6$$p064406$$tPhysical Review B$$v90$$x1098-0121$$y2014
000154961 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.90.064406$$gVol. 90, no. 6, p. 064406$$n6$$p064406$$tPhysical review / B$$v90$$x1098-0121$$y2014
000154961 8564_ $$uhttps://juser.fz-juelich.de/record/154961/files/FZJ-2014-04170.pdf$$yOpenAccess
000154961 909CO $$ooai:juser.fz-juelich.de:154961$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000154961 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000154961 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154961 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000154961 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000154961 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154961 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154961 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154961 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000154961 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154961 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000154961 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000154961 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000154961 9141_ $$y2014
000154961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143632$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000154961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130823$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131065$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000154961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130526$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000154961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000154961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000154961 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000154961 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000154961 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000154961 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000154961 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000154961 980__ $$ajournal
000154961 980__ $$aVDB
000154961 980__ $$aUNRESTRICTED
000154961 980__ $$aI:(DE-Juel1)IAS-1-20090406
000154961 980__ $$aI:(DE-Juel1)PGI-1-20110106
000154961 9801_ $$aFullTexts
000154961 981__ $$aI:(DE-Juel1)PGI-1-20110106
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1065389
000154961 999C5 $$1S. S. P. Parkin$$2Crossref$$oS. S. P. Parkin Spin Dependent Transport in Magnetic Nanostructures 2002$$tSpin Dependent Transport in Magnetic Nanostructures$$y2002
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.76.323
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.1790
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.37.5326
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.014461
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4250
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.1834
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1105514
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature04937
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2098
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.186403
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2199473
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.156601
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.96.266
000154961 999C5 $$1Y. Yafet$$2Crossref$$oY. Yafet Solid State Physics 1963$$tSolid State Physics$$y1963
000154961 999C5 $$1H. A. Kramers$$2Crossref$$oH. A. Kramers 1930$$y1930
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.81.5624
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssa.200778141
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.092406
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.224413
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.075113
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.125444
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.236603
000154961 999C5 $$1E. I. Rashba$$2Crossref$$oE. I. Rashba 1960$$y1960
000154961 999C5 $$1E. I. Rashba$$2Crossref$$oE. I. Rashba 1960$$y1960
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.201403
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.195305
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.224420
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.144408
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1082857
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.205417
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00616981
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms5030
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/35066533
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/p80-159
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/304
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/74/9/096501
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/3/39/006
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(90)90009-P
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/62/2/004
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.195133
000154961 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/25/16/163201