001     154961
005     20230426083111.0
024 7 _ |2 doi
|a 10.1103/PhysRevB.90.064406
024 7 _ |2 ISSN
|a 0163-1829
024 7 _ |2 ISSN
|a 1095-3795
024 7 _ |2 ISSN
|a 1550-235X
024 7 _ |2 ISSN
|a 0556-2805
024 7 _ |2 ISSN
|a 1098-0121
024 7 _ |2 WOS
|a WOS:000339994200005
024 7 _ |2 Handle
|a 2128/9123
024 7 _ |a altmetric:2346455
|2 altmetric
037 _ _ |a FZJ-2014-04170
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)143632
|a Long, Nguyen H.
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Spin relaxation and spin Hall transport in 5d transition-metal ultrathin films
260 _ _ |a College Park, Md.
|b APS
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1407761763_30532
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a The spin relaxation induced by the Elliott-Yafet mechanism and the extrinsic spin Hall conductivity due to the skew scattering are investigated in 5d transition-metal ultrathin films with self-adatom impurities as scatterers. The values of the Elliott-Yafet parameter and of the spin-flip relaxation rate reveal a correlation with each other that is in agreement with the Elliott approximation. At 10-layer thickness, the spin-flip relaxation time in 5d transition-metal films is quantitatively reported about few hundred nanoseconds at atomic percent. This time scale is one and two orders of magnitude shorter than the values in Au and Cu thin films, respectively. The anisotropy effect of the Elliott-Yafet parameter and of the spin-flip relaxation rate with respect to the direction of the spin-quantization axis in relation to the crystallographic axes is also analyzed. We find that the anisotropy of the spin-flip relaxation rate is enhanced due to the Rashba surface states on the Fermi surface, reaching values as high as 97% in 10-layer Hf(0001) film or 71% in 10-layer W(110) film. Finally, the spin Hall conductivity as well as the spin Hall angle due to the skew scattering off self-adatom impurities are calculated using the Boltzmann approach. Our calculations employ a relativistic version of the first-principles full-potential Korringa-Kohn-Rostoker Green function method.
536 _ _ |0 G:(DE-HGF)POF2-422
|a 422 - Spin-based and quantum information (POF2-422)
|c POF2-422
|f POF II
|x 0
542 _ _ |i 2014-08-07
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)130823
|a Mavropoulos, Phivos
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)131065
|a Zimmermann, Bernd
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)130526
|a Bauer, David
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, Stefan
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)130848
|a Mokrousov, Yuriy
|b 5
|u fzj
773 1 8 |a 10.1103/physrevb.90.064406
|b American Physical Society (APS)
|d 2014-08-07
|n 6
|p 064406
|3 journal-article
|2 Crossref
|t Physical Review B
|v 90
|y 2014
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.90.064406
|g Vol. 90, no. 6, p. 064406
|0 PERI:(DE-600)2844160-6
|n 6
|p 064406
|t Physical review / B
|v 90
|y 2014
|x 1098-0121
856 4 _ |u https://juser.fz-juelich.de/record/154961/files/FZJ-2014-04170.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:154961
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143632
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130823
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131065
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130526
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130548
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130848
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
913 2 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 1
913 1 _ |0 G:(DE-HGF)POF2-422
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1126/science.1065389
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. S. P. Parkin
|y 2002
|2 Crossref
|t Spin Dependent Transport in Magnetic Nanostructures
|o S. S. P. Parkin Spin Dependent Transport in Magnetic Nanostructures 2002
999 C 5 |a 10.1103/RevModPhys.76.323
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.55.1790
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.37.5326
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.014461
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.76.4250
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.83.1834
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1105514
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature04937
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2098
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.186403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2199473
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.156601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.96.266
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Y. Yafet
|y 1963
|2 Crossref
|t Solid State Physics
|o Y. Yafet Solid State Physics 1963
999 C 5 |1 H. A. Kramers
|y 1930
|2 Crossref
|o H. A. Kramers 1930
999 C 5 |a 10.1103/PhysRevLett.81.5624
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssa.200778141
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.092406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.224413
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.075113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.125444
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.236603
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 E. I. Rashba
|y 1960
|2 Crossref
|o E. I. Rashba 1960
999 C 5 |1 E. I. Rashba
|y 1960
|2 Crossref
|o E. I. Rashba 1960
999 C 5 |a 10.1103/PhysRevB.71.201403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.195305
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.224420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.144408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1082857
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.205417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF00616981
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms5030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/35066533
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1139/p80-159
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/74/9/096501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/3/39/006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0010-4655(90)90009-P
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/62/2/004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.195133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/25/16/163201
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21