000154999 001__ 154999
000154999 005__ 20221109161709.0
000154999 020__ $$a978-3-642-55194-9 (print)
000154999 020__ $$a978-3-642-55195-6 (electronic)
000154999 0247_ $$2doi$$a10.1007/978-3-642-55195-6_37
000154999 0247_ $$2ISSN$$a1611-3349
000154999 0247_ $$2ISSN$$a0302-9743
000154999 0247_ $$2WOS$$aWOS:000347415600037
000154999 037__ $$aFZJ-2014-04195
000154999 041__ $$aEnglish
000154999 082__ $$a004
000154999 1001_ $$0P:(DE-HGF)0$$aBerljafa, Mario$$b0
000154999 1112_ $$aThe 10th International Conference on Parallel Processing and Applied Mathematics$$cWarsaw$$d2013-09-08 - 2013-09-11$$gPPAM 2013$$wPoland
000154999 245__ $$aA Parallel and Scalable Iterative Solver for Sequences of Dense Eigenproblems Arising in FLAPW
000154999 260__ $$aBerlin, Heidelberg$$bSpringer Berlin Heidelberg$$c2014
000154999 29510 $$aParallel Processing and Applied Mathematics
000154999 300__ $$a395 - 406
000154999 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1407930977_32487
000154999 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000154999 3367_ $$033$$2EndNote$$aConference Paper
000154999 3367_ $$2ORCID$$aCONFERENCE_PAPER
000154999 3367_ $$2DataCite$$aOutput Types/Conference Paper
000154999 3367_ $$2DRIVER$$aconferenceObject
000154999 3367_ $$2BibTeX$$aINPROCEEDINGS
000154999 4900_ $$aLecture Notes in Computer Science$$v8385
000154999 520__ $$aIn one of the most important methods in Density Functional Theory – the Full-Potential Linearized Augmented Plane Wave (FLAPW) method – dense generalized eigenproblems are organized in long sequences. Moreover each eigenproblem is strongly correlated to the next one in the sequence. We propose a novel approach which exploits such correlation through the use of an eigensolver based on subspace iteration and accelerated with Chebyshev polynomials. The resulting solver, parallelized using the Elemental library framework, achieves excellent scalability and is competitive with current dense parallel eigensolvers.
000154999 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000154999 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x2
000154999 588__ $$aDataset connected to CrossRef Book, juser.fz-juelich.de
000154999 7001_ $$0P:(DE-Juel1)144723$$aDi Napoli, Edoardo$$b1$$eCorresponding Author$$ufzj
000154999 773__ $$a10.1007/978-3-642-55195-6_37
000154999 8564_ $$uhttps://juser.fz-juelich.de/record/154999/files/FZJ-2014-04195.pdf$$yRestricted
000154999 909CO $$ooai:juser.fz-juelich.de:154999$$pVDB
000154999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144723$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000154999 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000154999 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000154999 9141_ $$y2014
000154999 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000154999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000154999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000154999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000154999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000154999 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000154999 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000154999 980__ $$acontrib
000154999 980__ $$aVDB
000154999 980__ $$acontb
000154999 980__ $$aI:(DE-Juel1)JSC-20090406
000154999 980__ $$aUNRESTRICTED