000155036 001__ 155036 000155036 005__ 20240711113902.0 000155036 0247_ $$2doi$$a10.1016/j.jnucmat.2013.04.042 000155036 0247_ $$2ISSN$$a1873-4820 000155036 0247_ $$2ISSN$$a0022-3115 000155036 0247_ $$2WOS$$aWOS:000331732800165 000155036 0247_ $$2MLZ$$aLin13 000155036 037__ $$aFZJ-2014-04229 000155036 082__ $$a530 000155036 1001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b0$$eCorresponding Author$$ufzj 000155036 245__ $$aAdvanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—A European effort to accelerate fusion materials development 000155036 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2013 000155036 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407999282_32477 000155036 3367_ $$2DataCite$$aOutput Types/Journal article 000155036 3367_ $$00$$2EndNote$$aJournal Article 000155036 3367_ $$2BibTeX$$aARTICLE 000155036 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000155036 3367_ $$2DRIVER$$aarticle 000155036 520__ $$aFor the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected into the plasma and resistance to erosion and hydrogen isotope retention. The development of materials fulfilling these and other criteria is a large-scale and long-term activity which involves basic materials science, materials development, characterization under both loading conditions and off-line, as well as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced materials characterization techniques, among them the efficient use of neutron and synchrotron-based techniques, into the fusion materials community. Further, high-end transmission electron microscopy and mechanical characterization (also on a microscopic level in order to facilitate tests of small material volumes, such as from neutron irradiation campaigns) are to be more extensively applied in fusion materials research. Finally, irradiation facilities for neutron damage benchmarking are contributing to the understanding of radiation effects. This overview demonstrates by means of a few examples the recent advancements in fusion materials research, e.g. by applying synchrotron X-ray and neutron tomography to novel materials and components. Deeper understanding of radiation effects is achieved by in situ TEM of materials under irradiation. Modeling of irradiation effects is closely linked to activities at irradiation facilities. Finally, new developments in mechanical testing on micro- and nano-scales are addressed. 000155036 536__ $$0G:(DE-HGF)POF2-135$$a135 - Plasma-wall interactions (POF2-135)$$cPOF2-135$$fPOF II$$x0 000155036 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000155036 693__ $$0EXP:(DE-MLZ)ANTARES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)ANTARES-20140101$$6EXP:(DE-MLZ)SR4a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eANTARES: Cold neutron radiography and tomography station$$fSR4a$$x0 000155036 693__ $$0EXP:(DE-MLZ)NEPOMUC-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)NEPOMUC-20140101$$6EXP:(DE-MLZ)SR11-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eNEPOMUC: Neutron induced positron source munich$$fSR11$$x1 000155036 693__ $$0EXP:(DE-MLZ)STRESS-SPEC-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)STRESS-SPEC-20140101$$6EXP:(DE-MLZ)SR3-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSTRESS-SPEC: Materials science diffractometer$$fSR3$$x2 000155036 7001_ $$0P:(DE-HGF)0$$aFu, C.-C.$$b1 000155036 7001_ $$0P:(DE-HGF)0$$aKaprolat, A.$$b2 000155036 7001_ $$0P:(DE-HGF)0$$aNielsen, S. F.$$b3 000155036 7001_ $$0P:(DE-HGF)0$$aMergia, K.$$b4 000155036 7001_ $$0P:(DE-HGF)0$$aSchäublin, R.$$b5 000155036 7001_ $$0P:(DE-HGF)0$$aLindau, R.$$b6 000155036 7001_ $$0P:(DE-Juel1)133604$$aBolt, H.$$b7 000155036 7001_ $$0P:(DE-HGF)0$$aBuffière, J.-Y.$$b8 000155036 7001_ $$0P:(DE-HGF)0$$aCaturla, M. J.$$b9 000155036 7001_ $$0P:(DE-HGF)0$$aDécamps, B.$$b10 000155036 7001_ $$0P:(DE-HGF)0$$aFerrero, C.$$b11 000155036 7001_ $$0P:(DE-HGF)0$$aGreuner, H.$$b12 000155036 7001_ $$0P:(DE-HGF)0$$aHébert, C.$$b13 000155036 7001_ $$0P:(DE-HGF)0$$aHöschen, T.$$b14 000155036 7001_ $$0P:(DE-HGF)0$$aHofmann, M.$$b15 000155036 7001_ $$0P:(DE-HGF)0$$aHugenschmidt, C.$$b16 000155036 7001_ $$0P:(DE-HGF)0$$aJourdan, T.$$b17 000155036 7001_ $$0P:(DE-Juel1)158039$$aKöppen, M.$$b18$$ufzj 000155036 7001_ $$0P:(DE-HGF)0$$aPłociński, T.$$b19 000155036 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b20 000155036 7001_ $$0P:(DE-HGF)0$$aScheel, M.$$b21 000155036 7001_ $$0P:(DE-HGF)0$$aSchillinger, B.$$b22 000155036 7001_ $$0P:(DE-HGF)0$$aVollmer, A.$$b23 000155036 7001_ $$0P:(DE-HGF)0$$aWeitkamp, T.$$b24 000155036 7001_ $$0P:(DE-HGF)0$$aYao, W.$$b25 000155036 7001_ $$0P:(DE-HGF)0$$aYou, J.-H.$$b26 000155036 7001_ $$0P:(DE-HGF)0$$aZivelonghi, A.$$b27 000155036 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2013.04.042$$gVol. 442, no. 1-3, p. S834 - S845$$n1-3$$pS834 - S845$$tJournal of nuclear materials$$v442$$x0022-3115$$y2013 000155036 8564_ $$uhttps://juser.fz-juelich.de/record/155036/files/FZJ-2014-04229.pdf$$yRestricted 000155036 909CO $$ooai:juser.fz-juelich.de:155036$$pVDB 000155036 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000155036 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000155036 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000155036 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000155036 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000155036 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000155036 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000155036 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000155036 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000155036 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000155036 9141_ $$y2014 000155036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000155036 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)133604$$aWissenschaftlicher Geschäftsbereich II$$b7$$kVS-II 000155036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158039$$aForschungszentrum Jülich GmbH$$b18$$kFZJ 000155036 9132_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000155036 9131_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0 000155036 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000155036 980__ $$ajournal 000155036 980__ $$aVDB 000155036 980__ $$aI:(DE-Juel1)IEK-4-20101013 000155036 980__ $$aUNRESTRICTED 000155036 981__ $$aI:(DE-Juel1)IFN-1-20101013