000155036 001__ 155036
000155036 005__ 20240711113902.0
000155036 0247_ $$2doi$$a10.1016/j.jnucmat.2013.04.042
000155036 0247_ $$2ISSN$$a1873-4820
000155036 0247_ $$2ISSN$$a0022-3115
000155036 0247_ $$2WOS$$aWOS:000331732800165
000155036 0247_ $$2MLZ$$aLin13
000155036 037__ $$aFZJ-2014-04229
000155036 082__ $$a530
000155036 1001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b0$$eCorresponding Author$$ufzj
000155036 245__ $$aAdvanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—A European effort to accelerate fusion materials development
000155036 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2013
000155036 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1407999282_32477
000155036 3367_ $$2DataCite$$aOutput Types/Journal article
000155036 3367_ $$00$$2EndNote$$aJournal Article
000155036 3367_ $$2BibTeX$$aARTICLE
000155036 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155036 3367_ $$2DRIVER$$aarticle
000155036 520__ $$aFor the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected into the plasma and resistance to erosion and hydrogen isotope retention. The development of materials fulfilling these and other criteria is a large-scale and long-term activity which involves basic materials science, materials development, characterization under both loading conditions and off-line, as well as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced materials characterization techniques, among them the efficient use of neutron and synchrotron-based techniques, into the fusion materials community. Further, high-end transmission electron microscopy and mechanical characterization (also on a microscopic level in order to facilitate tests of small material volumes, such as from neutron irradiation campaigns) are to be more extensively applied in fusion materials research. Finally, irradiation facilities for neutron damage benchmarking are contributing to the understanding of radiation effects. This overview demonstrates by means of a few examples the recent advancements in fusion materials research, e.g. by applying synchrotron X-ray and neutron tomography to novel materials and components. Deeper understanding of radiation effects is achieved by in situ TEM of materials under irradiation. Modeling of irradiation effects is closely linked to activities at irradiation facilities. Finally, new developments in mechanical testing on micro- and nano-scales are addressed.
000155036 536__ $$0G:(DE-HGF)POF2-135$$a135 - Plasma-wall interactions (POF2-135)$$cPOF2-135$$fPOF II$$x0
000155036 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155036 693__ $$0EXP:(DE-MLZ)ANTARES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)ANTARES-20140101$$6EXP:(DE-MLZ)SR4a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eANTARES: Cold neutron radiography and tomography station$$fSR4a$$x0
000155036 693__ $$0EXP:(DE-MLZ)NEPOMUC-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)NEPOMUC-20140101$$6EXP:(DE-MLZ)SR11-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eNEPOMUC: Neutron induced positron source munich$$fSR11$$x1
000155036 693__ $$0EXP:(DE-MLZ)STRESS-SPEC-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)STRESS-SPEC-20140101$$6EXP:(DE-MLZ)SR3-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSTRESS-SPEC: Materials science diffractometer$$fSR3$$x2
000155036 7001_ $$0P:(DE-HGF)0$$aFu, C.-C.$$b1
000155036 7001_ $$0P:(DE-HGF)0$$aKaprolat, A.$$b2
000155036 7001_ $$0P:(DE-HGF)0$$aNielsen, S. F.$$b3
000155036 7001_ $$0P:(DE-HGF)0$$aMergia, K.$$b4
000155036 7001_ $$0P:(DE-HGF)0$$aSchäublin, R.$$b5
000155036 7001_ $$0P:(DE-HGF)0$$aLindau, R.$$b6
000155036 7001_ $$0P:(DE-Juel1)133604$$aBolt, H.$$b7
000155036 7001_ $$0P:(DE-HGF)0$$aBuffière, J.-Y.$$b8
000155036 7001_ $$0P:(DE-HGF)0$$aCaturla, M. J.$$b9
000155036 7001_ $$0P:(DE-HGF)0$$aDécamps, B.$$b10
000155036 7001_ $$0P:(DE-HGF)0$$aFerrero, C.$$b11
000155036 7001_ $$0P:(DE-HGF)0$$aGreuner, H.$$b12
000155036 7001_ $$0P:(DE-HGF)0$$aHébert, C.$$b13
000155036 7001_ $$0P:(DE-HGF)0$$aHöschen, T.$$b14
000155036 7001_ $$0P:(DE-HGF)0$$aHofmann, M.$$b15
000155036 7001_ $$0P:(DE-HGF)0$$aHugenschmidt, C.$$b16
000155036 7001_ $$0P:(DE-HGF)0$$aJourdan, T.$$b17
000155036 7001_ $$0P:(DE-Juel1)158039$$aKöppen, M.$$b18$$ufzj
000155036 7001_ $$0P:(DE-HGF)0$$aPłociński, T.$$b19
000155036 7001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b20
000155036 7001_ $$0P:(DE-HGF)0$$aScheel, M.$$b21
000155036 7001_ $$0P:(DE-HGF)0$$aSchillinger, B.$$b22
000155036 7001_ $$0P:(DE-HGF)0$$aVollmer, A.$$b23
000155036 7001_ $$0P:(DE-HGF)0$$aWeitkamp, T.$$b24
000155036 7001_ $$0P:(DE-HGF)0$$aYao, W.$$b25
000155036 7001_ $$0P:(DE-HGF)0$$aYou, J.-H.$$b26
000155036 7001_ $$0P:(DE-HGF)0$$aZivelonghi, A.$$b27
000155036 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2013.04.042$$gVol. 442, no. 1-3, p. S834 - S845$$n1-3$$pS834 - S845$$tJournal of nuclear materials$$v442$$x0022-3115$$y2013
000155036 8564_ $$uhttps://juser.fz-juelich.de/record/155036/files/FZJ-2014-04229.pdf$$yRestricted
000155036 909CO $$ooai:juser.fz-juelich.de:155036$$pVDB
000155036 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155036 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155036 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155036 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155036 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155036 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155036 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155036 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155036 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000155036 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000155036 9141_ $$y2014
000155036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155036 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)133604$$aWissenschaftlicher Geschäftsbereich II$$b7$$kVS-II
000155036 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158039$$aForschungszentrum Jülich GmbH$$b18$$kFZJ
000155036 9132_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000155036 9131_ $$0G:(DE-HGF)POF2-135$$1G:(DE-HGF)POF2-130$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-wall interactions$$x0
000155036 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000155036 980__ $$ajournal
000155036 980__ $$aVDB
000155036 980__ $$aI:(DE-Juel1)IEK-4-20101013
000155036 980__ $$aUNRESTRICTED
000155036 981__ $$aI:(DE-Juel1)IFN-1-20101013