001     155036
005     20240711113902.0
024 7 _ |2 doi
|a 10.1016/j.jnucmat.2013.04.042
024 7 _ |2 ISSN
|a 1873-4820
024 7 _ |2 ISSN
|a 0022-3115
024 7 _ |2 WOS
|a WOS:000331732800165
024 7 _ |2 MLZ
|a Lin13
037 _ _ |a FZJ-2014-04229
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)157640
|a Linsmeier, Ch.
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—A European effort to accelerate fusion materials development
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2013
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1407999282_32477
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a For the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected into the plasma and resistance to erosion and hydrogen isotope retention. The development of materials fulfilling these and other criteria is a large-scale and long-term activity which involves basic materials science, materials development, characterization under both loading conditions and off-line, as well as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced materials characterization techniques, among them the efficient use of neutron and synchrotron-based techniques, into the fusion materials community. Further, high-end transmission electron microscopy and mechanical characterization (also on a microscopic level in order to facilitate tests of small material volumes, such as from neutron irradiation campaigns) are to be more extensively applied in fusion materials research. Finally, irradiation facilities for neutron damage benchmarking are contributing to the understanding of radiation effects. This overview demonstrates by means of a few examples the recent advancements in fusion materials research, e.g. by applying synchrotron X-ray and neutron tomography to novel materials and components. Deeper understanding of radiation effects is achieved by in situ TEM of materials under irradiation. Modeling of irradiation effects is closely linked to activities at irradiation facilities. Finally, new developments in mechanical testing on micro- and nano-scales are addressed.
536 _ _ |0 G:(DE-HGF)POF2-135
|a 135 - Plasma-wall interactions (POF2-135)
|c POF2-135
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
693 _ _ |0 EXP:(DE-MLZ)ANTARES-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)ANTARES-20140101
|6 EXP:(DE-MLZ)SR4a-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e ANTARES: Cold neutron radiography and tomography station
|f SR4a
|x 0
693 _ _ |0 EXP:(DE-MLZ)NEPOMUC-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)NEPOMUC-20140101
|6 EXP:(DE-MLZ)SR11-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e NEPOMUC: Neutron induced positron source munich
|f SR11
|x 1
693 _ _ |0 EXP:(DE-MLZ)STRESS-SPEC-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)STRESS-SPEC-20140101
|6 EXP:(DE-MLZ)SR3-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e STRESS-SPEC: Materials science diffractometer
|f SR3
|x 2
700 1 _ |0 P:(DE-HGF)0
|a Fu, C.-C.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Kaprolat, A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Nielsen, S. F.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Mergia, K.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Schäublin, R.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Lindau, R.
|b 6
700 1 _ |0 P:(DE-Juel1)133604
|a Bolt, H.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Buffière, J.-Y.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Caturla, M. J.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Décamps, B.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Ferrero, C.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Greuner, H.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Hébert, C.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Höschen, T.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Hofmann, M.
|b 15
700 1 _ |0 P:(DE-HGF)0
|a Hugenschmidt, C.
|b 16
700 1 _ |0 P:(DE-HGF)0
|a Jourdan, T.
|b 17
700 1 _ |0 P:(DE-Juel1)158039
|a Köppen, M.
|b 18
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Płociński, T.
|b 19
700 1 _ |0 P:(DE-HGF)0
|a Riesch, J.
|b 20
700 1 _ |0 P:(DE-HGF)0
|a Scheel, M.
|b 21
700 1 _ |0 P:(DE-HGF)0
|a Schillinger, B.
|b 22
700 1 _ |0 P:(DE-HGF)0
|a Vollmer, A.
|b 23
700 1 _ |0 P:(DE-HGF)0
|a Weitkamp, T.
|b 24
700 1 _ |0 P:(DE-HGF)0
|a Yao, W.
|b 25
700 1 _ |0 P:(DE-HGF)0
|a You, J.-H.
|b 26
700 1 _ |0 P:(DE-HGF)0
|a Zivelonghi, A.
|b 27
773 _ _ |0 PERI:(DE-600)2001279-2
|a 10.1016/j.jnucmat.2013.04.042
|g Vol. 442, no. 1-3, p. S834 - S845
|n 1-3
|p S834 - S845
|t Journal of nuclear materials
|v 442
|x 0022-3115
|y 2013
856 4 _ |u https://juser.fz-juelich.de/record/155036/files/FZJ-2014-04229.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155036
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157640
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-Juel1)VS-II-20090406
|6 P:(DE-Juel1)133604
|a Wissenschaftlicher Geschäftsbereich II
|b 7
|k VS-II
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)158039
|a Forschungszentrum Jülich GmbH
|b 18
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-174
|1 G:(DE-HGF)POF3-170
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Kernfusion
|v Plasma-Wall-Interaction
|x 0
913 1 _ |0 G:(DE-HGF)POF2-135
|1 G:(DE-HGF)POF2-130
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Kernfusion
|v Plasma-wall interactions
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21