001     155044
005     20210129214011.0
024 7 _ |a 10.5675/HyWa_2014,4_1
|2 doi
024 7 _ |a WOS:000340219900001
|2 WOS
024 7 _ |a 2128/18666
|2 Handle
037 _ _ |a FZJ-2014-04235
041 _ _ |a deutsch
082 _ _ |a 690
100 1 _ |a Hannappel, Stephan
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Vorkommen von Tierarzneimitteln im oberflächennahen Grundwasser unter Standorten mit hoher Viehbesatzdichte in Deutschland
260 _ _ |a Koblenz
|c 2014
|b Bundesanst. für Gewässerkunde
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1408006286_32480
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The findings of the EU ‘Materials Assessment Group’ (MAG), within the 2012 EU Fusion Roadmap exercise, are discussed. MAG analysed the technological readiness of structural, plasma facing and high heat flux materials for a DEMO concept to be constructed in the early 2030s, proposing a coherent strategy for R&D up to a DEMO construction decision.A DEMO phase I with a ‘Starter Blanket’ and ‘Starter Divertor’ is foreseen: the blanket being capable of withstanding ⩾2 MW yr m−2 fusion neutron fluence (∼20 dpa in the front-wall steel). A second phase ensues for DEMO with ⩾5 MW yr m−2 first wall neutron fluence. Technical consequences for the materials required and the development, testing and modelling programmes, are analysed using: a systems engineering approach, considering reactor operational cycles, efficient maintenance and inspection requirements, and interaction with functional materials/coolants; and a project-based risk analysis, with R&D to mitigate risks from material shortcomings including development of specific risk mitigation materials. The DEMO balance of plant constrains the blanket and divertor coolants to remain unchanged between the two phases. The blanket coolant choices (He gas or pressurised water) put technical constraints on the blanket steels, either to have high strength at higher temperatures than current baseline variants (above 650 °C for high thermodynamic efficiency from He-gas coolant), or superior radiation-embrittlement properties at lower temperatures (∼290–320 °C), for construction of water-cooled blankets. Risk mitigation proposed would develop these options in parallel, and computational and modelling techniques to shorten the cycle-time of new steel development will be important to achieve tight R&D timescales. The superior power handling of a water-cooled divertor target suggests a substructure temperature operating window (∼200–350 °C) that could be realised, as a baseline-concept, using tungsten on a copper-alloy substructure. The difficulty of establishing design codes for brittle tungsten puts great urgency on the development of a range of advanced ductile or strengthened tungsten and copper compounds.Lessons learned from Fission reactor material development have been included, especially in safety and licensing, fabrication/joining techniques and designing for in-vessel inspection. The technical basis of using the ITER licensing experience to refine the issues in nuclear testing of materials is discussed.Testing with 14 MeV neutrons is essential to Fusion Materials development, and the Roadmap requires acquisition of ⩾30 dpa (steels) 14 MeV test data by 2026. The value and limits of pre-screening testing with fission neutrons on isotopically- or chemically-doped steels and with ion-beams are evaluated to help determine the minimum14 MeV testing programme requirements.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Balzer, Frederike
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Groeneweg, Joost
|0 P:(DE-Juel1)129462
|b 2
|u fzj
700 1 _ |a Zühlke, Sebastian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schulz, Dietrich
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.5675/HyWa_2014,4_1
|0 PERI:(DE-600)2667551-1
|n 4
|p 208-220
|t Hydrologie und Wasserbewirtschaftung
|v 58
|y 2014
|x 1439-1783
856 4 _ |u https://juser.fz-juelich.de/record/155044/files/FZJ-2014-04235.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:155044
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129462
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21