FORSCHUNGSZENTRUM JULICH GmbH

Zentralinstitut fiir Angewandte Mathematik
D-52425 Jiilich, Tel. (02461) 61-6402

Technical Report

Application Steering in a Collaborative
Environment

John Brooke”, Thomas Eickermann, Wolfgang Frings,
Paul Gibbon, Lidia Kirtchakova, Ulrich Lang**, Daniel
Mallmann, Mark McKeown”, S tephen Pickles”, Andrew
Porter”, Mark Riding”, Mathilde Romberg, Anke Visser,
Uwe Wossner

FZJ-ZAM-1B-2004-09

August 2004
(last change: 30.08.2004)

Preprint: Also appearing in: Proceedings of the ACME/IEEE SC2003 Conference, Phoenix, 2003.

(*) University of Manchester
(**) University Stuttgart, HLRS

Application Steering in a Collaborative Environment

John Brooke
University of Manchester
SVE, Manchester Computing
Manchester M13 9PL, UK

j.m.brooke@man.ac.uk

ABSTRACT

In this showcase we will present live running simulations
which are integrated into the Access Grid in a variety of
different ways. An example of this is the use of vncto dis-
tribute a desktop on which the simulation is being displayed.
Another example is the redirection of the visualization into
vic to make 3D animations available over the Access Grid.
Other examples that will be explored are the use of SGI’s
OpenGL VizServer to direct the output of a graphics su-
percomputer located on the Grid to the AG locations. We
will also utilize the ability of the next generation AG soft-
ware to directly link with visualization toolkits such as vtk,
AVS/Express, or COVISE as an integrated part of the Vir-
tual Venue as this functionality has developed by the time
of the SC2003 demonstrations. We also demonstrate steer-
ing in a collaborative setting using a steering service which
is fully compliant with OGSI and with the proposed OGSA
architecture. This can be integrated with current Grid mid-
dleware (e.g. GT2 and UNICORE) using a specially devel-
oped Perl hosting environment, OGSI:Lite.

Keywords

application steering, Grid Computing, collaborative envi-
ronment, Access Grid

1. INTRODUCTION

This showcase presentation will feature live steering of
large scale computations viewed in multiple Access Grid
nodes. Simulations in condensed matter physics, plasma
physics, and fluid dynamics will be shown to audiences at
the showcase floor and in other participating AG nodes.
These simulations run on very large supercomputers and the
collaborative research teams can be distributed across both
intra and inter-continental networks. Since the resources
in terms of computation and visualization are highly spe-
cialised and expensive to use, it is essential to utilise them
as effectively as possible. Our usage scenarios are therefore

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SC’03 November 15-21, 2003, Phoenix, Arizona, USA

Copyright 2003 ACM 1-58113-695-1/03/0011 ...$5.00.

Thomas Eickermann
Research Centre Juelich
NIC-ZAM
D-52425 Juelich, Germany

th.eickermann@fz-
juelich.de

Uwe Woessner
University of Stuttgart
HLRS
Allmandring 30a
D-70550 Stuttgart, Germany

woessner@hlrs.de

more akin to access to a large experimental apparatus such
as a synchrotron or a telescope, than to the task-farming
paradigm used in many Grid demonstrations. The aim of
this paper and the associated presentation is to show how
geographically distributed teams can view simultaneously a
visualization of a running simulation and can steer the ap-
plication. This utilizes the power of Access Grid [?] in be-
ing able to coordinate multiple channels of communication
within a virtual space (the Virtual Venue of the meeting).

In order to computationally steer a simulation, one needs
an interface to communicate with the simulation, which
may be running on a remote machine. In addition to al-
lowing parameters to be monitored and changed, this in-
terface needs to offer the possibility of visualizing complex
data sets, for instance 3D isosurfacing and volume render-
ing. To enable intuitive interaction with a simulation, it
is essential that visualization can be performed sufficiently
fast compared to changes taking place in the simulation. Vi-
sualization of large and complex data sets typically requires
high-end graphics hardware, which, like high-end computing
resources, is not always available locally. Therefore, visual-
ization should be treated as a distributed resource as well,
the need for which stems not only from computational steer-
ing but also from the high performance visualization com-
munity’s needs. We present live running simulations which
are integrated into the Access Grid in a variety of different
ways. One example of this is the use of vnc to distribute
a desktop on which the simulation is being displayed. An-
other example is the redirection of the visualization into
vic to make 3D animations available over the Access Grid.
Other examples that will be explored are the use of OpenGL
VizServer to direct the output of a graphics supercomputer
located on the Grid to the AG locations.

We also explore the ability of the next generation AG
software (Version 2.0 and upwards) to directly link with vi-
sualization toolkits such as vtk, AVS/Express, or COVISE
as an integrated part of the Virtual Venue. Currently this
ability is still being developed. We therefore describe our ap-
plications running outside of an Access Grid framework as
well as within this framework. In the former case, the view
of the running application can be distributed via vnc from a
screen attached to a machine integrated into the steering en-
vironment. This is not full integration into Access Grid but
it does allow the advanced video-conferencing capabilities to
be linked with the steering of the application and allows for
wider participation in the experiment. Specifically, some of
the AG sites may be unable to participate in the steering
but can view the output from the steering experiment as it

Bezier
SGI Onyx @ Manchester
Vik + VizServer

Firewall

UNICORE
Gateway and NJS
Manchester

Laptop
SHU Conference Centre

“VizServer client
Steering GUI
“The Mind Electric GLUE web.

QMUL H
f service hosting environment with
1
1

Dirac
SGI Onyx @ QMUL
LB3D with RealityGrid
Steering API

OGSA extensions
Single sign-on using UK e-Science
digital certiicates

Figure 1: The prototype RealityGrid steering ap-
plication operating as a Web service. Computation
and visualisation are on different machines and the
steering and visualisation can be viewed and con-
trolled from a users laptop.

evolves.

2. REALITYGRID
2.1 Aims of RealityGrid

One demonstration will be from the RealityGrid project
[?] which aims to predict the realistic behavior of matter
based on the properties of the microscopic components using
diverse simulation methods (Lattice Boltzmann, Molecular
Dynamics and Monte Carlo (e.g. [?, ?]) spanning many time
and length scales and the discovery of new materials through
integrated experiments. A central theme of RealityGrid is
the facilitation of distributed and collaborative exploration
of parameter space through computational steering and on-
line, high-end visualization. A RealityGrid scenario involves
a large-scale simulation running on a massively parallel sys-
tem at on site coupled to a high-end visualization system at
another site with the steering and display interfaces running
at one or more remote sites. The simulation component pe-
riodically (or as demanded by the steerer component) emits
”samples” for consumption by the visualization component,
while grid middleware is responsible for the transfer of data
between components. The primary AG node will be the
University of Manchester but the computation and visual-
ization will be distributed over different supercomputers in
both the US and Europe.

2.2 Computational Steering in an OGSA frame-

work

An important intention of RealityGrid is to develop com-
putational steering within the framework of the Open Grid
Services Architecture [?].The steering client, i.e. the part
that can be integrated into the collaborative environment,
contacts a steering service which will actually orchestrate
the details of the steering and associated visualization (Fig-
ure 1). A prototype of such a steering service was demon-
strated at the UK e-Science All-Hands meeting in September
2002 [?]. This utilised a prototype Grid service implemen-
tation posted to the OGSA mailing list in March 2002 by

Dave Snelling of Fujitsu. The Web service was contacted
from a laptop on the conference floor. The orchestration of
the compute and visualization servers and the file transfer
was handled by UNICORE (UNiform Interface to COmput-
ing REsources) (for details see chapter 3.1, [?, ?]) using
the Unicore Protocol Layer. This allowed the application
to simulate the behaviour of a possible OGSA service be-
fore the OGSI working group had formulated its standards
recommendations.

The computation was a Lattice Boltzmann 3D code sim-
ulating a mixture of two fluids. The parameter used for the
steering was the miscibility of the fluids. The simulation
was on a 3D grid with periodic boundary conditions. As
the miscibility parameter was altered, the structures formed
by the fluids changed and the visualization was necessary so
that these changes could be observed. It is this visual ele-
ment to the steering that necessitates the incorporation of a
visualization supercomputer into the workflow. In the orig-
inal demonstration the computation was carried out on an
SGI Onyx (Dirac) at UCL in London. Samples were emit-
ted as the computation progressed and sent over the UK
SuperJanet network to another SGI Onyx in Manchester
(Bezier). The isosurfaces were rendered and the output of
the graphics pipes returned to the users laptop at the Con-
ference floor in Sheffield by SGI OpenGL VizServer. It is
purely coincidental that in this actual example the compute
and visualization servers have the same architecture. No
such restriction is inherent in the middleware driving the
application.

The application could traverse firewalls since the UNI-
CORE architecture places security Gateways at the firewall
boundary. The workflows being instantiated are known in
UNICORE as Abstract Job Objects (AJOs) and are sent via
ssl as serialised Java objects. They are received by a Net-
work Job Supervisor (which may or may not be on the same
machine as hosts the gateway) and the AJOs are translated
into Perl scripts for a target machine. This proeess is known
as incarnation in the UNICORE model; it allows the details
of the scripts used to run the workflow to be hidden from
the application. This is a very important part of the process
of abstraction necessary for the creation of Grid services.

2.3 An OGSA Steering Service

Since then the steering application has also been imple-
mented using Globus Toolkit version 2.4 as part of the UK
Level 2 e-Science Grid [?]. The experience gained from these
implementations is now being incorporated into the devel-
opment of an OGSA Computational Steering service. The
proposed architecture is shown in Figure 2.3. The laptop
used in Figure 1 is now replaced by the abstraction of a
Steering client. This contacts a registry which have details
of the steering services that have published to the registry.
For illustration we show one service that steers the appli-
cation and another that steers the visualization. In more
complex workflows there could be more services, possibly
linked to live experiments or database searches. The steer-
ing services allow all of these components of the workflow
to be steered. This shows the potential of the OGSA ap-
proach. The client chooses the services it will require and
binds them to the client. From the point of view of enabling
applications, the RealityGrid project has defined APIs for
the steering calls which can be used to link from the applica-
tion to the services. Some workflow description is necessary

Application

Data transfer

Visualisation

Figure 2: OGSA steering service architecture, im-
plemented in the RealityGrid steering service

to connect the services.

Currently the very first implementations of the proposed
OGSI standard are only becoming available (GT3 and .NET
implementations announced in July 2003). These early im-
plementations have very basic functionality, insufficient for
our steering application. Moreover, the RealityGrid project
wishes to continue to utilise the UK Level 2 e-Science Grid
which will be based on GT2 until 2004. RealityGrid has
therefore developed a lightweight OGSA hosting environ-
ment called OGSI-Lite [?]. This uses Perl to create the
hosting enviroment and can thus run on almost any plat-
form. In fact part of the testing platform for OGSI-Lite
includes a Sony Playstation 2. This echoes the structure
of the original UNICORE implementation of the steering
service since the UNICORE TSI (Target System Interface)
uses Perl to incarnate the Abstract Job Object. Thus UNI-
CORE fits well in the role of a precursor of OGSA and the
ideas of the original architecture continue to be applicable
and updatable in a Grid Services framework.

2.4 Collaborative Aspects

The RealityGrid demonstration will show the Lattice-
Boltzmann computation being run on a remote supercom-
puter. The visualization will also be rendered on another
separate supercomputer as shown in Figure 1, however we
utilise the AccessGrid to replace the single client with partic-
ipating clients at multiple sites.All participating sites who
have native multicast enabled will be able to view the vi-
sualization, this can be described as passive collaboration.
Participating sites able to run OpenGL VizServer will be
able to share control of the visualization using VizServer’s
collaborative abilities. Sharing the steering client requires
the use of vnc. This is the active mode of participating. Here
we go beyond the advanced video-conferencing capabilities
of the Access Grid, moving towards a genuine collaborative
problem-solving environment.

Collaborative visualization is also achieved by means of
the vtkNetwork extension to vtk provided by the Futures
Lab, Argonne National Laboratory, University of Chicago.
This package provides a specialised vtk rendering class which
streams updates to its framebuffer to a multicast address.
Remote users can then view the broadcast visualization

through a standard vic session.

The vtkNetwork classes also allow for collaboration by end
users, by sending any remote events back to the visualization
application using a patched version of vic. We do not take
this approach however, and instead use the collaborative
features offered by VizServer, which allows multiple users
to share the same login session on a remote machine. This
removes the need for any end user’s wanting to participate
in a collaborative visualization having to patch their version
of vic.

We draw attention to the power of tools such as VizServer.
The datasets which are being rendered as isosurfaces are too
large to be visualized on a laptop client. VizServer allows
the output of the graphics pipes from an Onyx visual super-
computer to be accessed remotely. In addition this greatly
reduces network traffic since only compressed bitmaps need
to be sent to the participating sites. We believe that this
is a realisation of one of the common claims for the utility
of a Computational Grid, namely that it provides seamless
access to resources beyond the capabilities of a desktop or
laptop machine. Moreover, as described in Sections 2.2 and
2.3 above, we have integrated this seamlessly into the col-
laborative session, the participants need never know details
of which supercomputers are running the application. More-
over RealityGrid is developing the ability to migrate both
computation and visualization within a session without any
disturbance or intervention on the part of the participating
clients. Thus the Grid is used as a form of computational
power, i.e. the resource per unit time needed to run the
simulation and visualization at a pace that keeps the inter-
activity at the client level. This is the novelty of this demon-
stration indicating how far Grid services have moved beyond
the original batch submission, or task farming model.

3. STEERING UNICORE APPLICATIONS
WITH VISIT

Research Center Juelich is the primary AG node for the
second demonstration which will present a steering exten-
sion to the UNICORE Grid system based on the steering
toolkit VISIT. As an application, a new plasma simulation
code, PEPC (Parallel Electrostatic Plasma Coulomb-solver)
is shown. All participating AG sites will be able to share
the experience via vic and vnc. In addition to that, sites
that have AVS/Express installed can actively participate in
the collaborative steering of the application. In the follow-
ing sections, the UNICORE system, VISIT, PEPC, and the
planned demonstration will briefly be described.

3.1 The UNICORE Grid System

The UNICORE software provides a Grid infrastructure
together with a computing portal for engineers and scien-
tists to access supercomputer centers from anywhere on the
Internet. In contrast to e.g. the Globus [?] toolkit, the most
widely deployed Grid software today, UNICORE, which was
developed in several German and European projects [?, ?,
?], follows a vertically integrated approach. It offers seam-
less and secure access to distributed computing resources,
with a focus on workflow management of batch jobs. Be-
sides its intuitive user interface, an advantage of UNICORE
is that it does not require any modifications of the appli-
cations that run under its control. UNICORE is used as a
”production system” in several German HPC centers and

has recently been selected as the Grid middleware for the
new Japanese National Research Grid Initiative (NAREGI)
[?].

The UNICORE Grid system consists of three distinct soft-
ware tiers:

e UNICORE client interacting with the user and pro-
viding functions to construct, submit and control the
execution of computational jobs,

e UNICORE servers that are divided into gateways act-
ing as point-of-entry into the protected domains of the
HPC centres and Network Job Supervisors (NJSs) that
adapt the abstract UNICORE job for the specific HPC
system,

e UNICORE target systems that schedule and run the
jobs on the HPC platforms. On these systems a Tar-
get System Interface (TSI), which is available as a Java
application or a set of Perl scripts, performs the com-
munication with the NJS.

Here we present the design and a prototype implementa-
tion of an extension to UNICORE that supports computa-
tional steering. It is based on the steering toolkit VISIT
[?] and is designed to preserve the following strengths of
UNICORE:

e single sign-on with strong authentication and encryp-
tion,

e firewall-friendliness; handling of all communication over
a single fixed TCP server-port,

e immediate portability; any application that uses VISIT
will be able to use the VISIT-UNICORE extension
without modifications.

The only component of the UNICORE system that needs
to be modified for this extension is the TSI, thus maintain-
ing backward compatibility with the standard UNICORE
system.

3.2 The Visualization Interface Toolkit (VISIT)

The VISualization Interface Toolkit (VISIT) is a light-
weight library for online visualization and computational
steering. Its first version has been developed in the project
"Gigabit Testbed West’ [?], a testbed for the German Gigabit
Science Network, the G-WiN. Since then, VISIT has evolved
into a stable software used in several application projects,
mainly on the Supercomputers of the John von Neumann In-
stitute for Computing (NIC) at Juelich. A main design goal
of VISIT was to minimize the load on the steered simulation
and to prevent failures or slow operation of the visualization
from disturbing the simulation progress. This means that
all operations (like opening a connection, sending data to be
visualized or receiving new parameters) have to be initiated
by the simulation and are guaranteed to complete (or fail)
after a user-specified timeout. This led to the design deci-
sion to implement VISIT as a simple client-server applica-
tion where the visualization acts as a server that dispatches
the simulations requests - unlike many other steering toolk-
its that work the opposite way [?, 7, ?, ?, ?]. To keep VISIT
portable to ’classic supercomputers’ which often lack good
implementations of common UNIX protocols or tools, the

simulation side of VISIT in particular does not rely on any
external software or special environment and has a lean and
easy-to-use interface.

VISIT uses an MPI-like data transport mechanism based
on messages that are distinguished via tags to transfer sim-
ple data types like strings, integers, floats, user defined struc-
tures, and arrays of these. The client either sends data
along with a header describing its content or requests data
from the server by sending a header that describes what
is requested. Any data conversions (byte order, precision,
integer-float) are performed transparently by the server, again
so that the simulation is disturbed as little as possible. The
client (simulation) part of VISIT has C, Fortran, and Perl
language bindings. On the server (visualization) side VISIT
supports C, Perl and AVS/Express, a commercial visual-
ization software. Bindings for Java, IDL (Interactive Data
Language) and tt vtk are currently being developed. VISIT
is freely available for download [?] in source-form for com-
mon UNIX platforms and Microsoft Windows.

A major drawback of VISIT is that it does not provide
any encryption or other means of security except for a con-
nection password that is transferred in clear-text. Due to its
dynamic TCP-port selection scheme it also does not work
well with firewalls. These problems are resolved by the in-
tegration of VISIT with UNICORE which is described in
the next section, since UNICORE offers exactly the features
needed.

3.3 The Steering Extension to UNICORE

The main technical challenge when trying to steer VISIT
applications running under control of UNICORE is to map
the different communication models of these two systems
correctly. In UNICORE, the user uses a client to submit
jobs, query their status and eventually fetch the results. All
these operations are separate transactions that do not re-
quire a stateful connection between the UNICORE client
and the target system to be maintained. While this con-
tributes to the robustness of the UNICORE system (a client
can appear or vanish at any time) it does not match the
connection-oriented architecture of VISIT well, where the
steered application is the client and the visualization the
server.

To overcome that we have designed and implemented a
connection-oriented protocol on top of the UNICORE pro-
tocol. The simulation-end of that connection is formed by
VISIT proxy-servers which are separate processes running
on each target system. The other end of the connection is
located at the UNICORE client, implemented as a client-
plugin and acting as a VISIT proxy-client. By polling the
target system for new data, that plugin is able to emulate
the server capabilities that are required for the VISIT con-
nection. Using the proxies at the TSI and UNICORE client,
VISIT applications can communicate without having to be
modified.

With the VISIT extension to UNICORE described so far,
a user can attach one online-visualization or steering appli-
cation to a UNICORE job at a time. However, a further
modification to allow multiple users to collaboratively view
and steer a simulation is straight-forward. To achieve this,
the simulation data has to be sent to all visualization ap-
plications and these applications have to exchange informa-
tion among each other to ensure that everyone has the same
view of the data (e.g. position and orientation of view point

or parameters like thresholds that influence the visualiza-
tion). Since the simulation acts as a client in VISIT, the
former task can easily be implemented by a 'multiplexer’
that simply sends all VISIT send-requests to all participat-
ing visualizations, ensuring that everyone views the same
data. Receive-requests are only sent to a 'master’ visual-
ization, so that only that master is able to actively steer
the application. The master-role can be moved between the
simulations allowing for a coordinated cooperative steering.
This functionality has been implemented in an application
(the vbroker) that is part of the standard VISIT distribu-
tion. For the VISIT-UNICORE extension this functionality
has been moved into the VISIT proxy-server running on the
UNICORE target system. This has the advantage that all
users participating in the collaboration have to authenticate
to the UNICORE system.

Like video and audio, the exchange of control information
between the visualizations is sensitive to latency if a 'sense
of presence’ is to be created among the users. Therefore we
do currently not use UNICORE communication mechanisms
for that purpose. Instead, we have implemented an external
server that collects and redistributes the control data. This
server allows to assign different roles to the participants: one
role allows to change visualization parameters like the view
angle and a second role is just for passive viewers.

3.4 The Access Grid Demonstration

The application that is used for the demonstration is PEPC
(Parallel Electrostatic Plasma Coulomb-solver), a new plasma
simulation code [?]. PEPC has been instrumented to be
steered with VISIT independently of the VISIT-UNICORE
extension and does not necessarily require UNICORE for
its operation. The code uses a hierarchical tree algorithm to
perform potential and force summation for charged particles
in a time O(N log N), allowing mesh-free particle simula-
tion on length- and time-scales normally possible only with
particle-in-cell or hydrodynamic techniques. The VISIT in-
terface was integrated at a very early stage in the develop-
ment of PEPC to assist in verifying the correctness of the
tree structure and domain decomposition for geometrically
complex systems: for example, a particle beam striking a
spherical plasma target. This is done by regularly shipping
both particle data-space comprising coordinates, velocities,
charge, processor number and tracking-label plus informa-
tion on the tree structure, at present consisting of a set of
node coordinates representing each processor domain. Parti-
cles are displayed as points, diamond glyphs and vectors, in-
cluding time-histories over several time-steps; tree domains
as transparent or solid boxes, providing immediate insight
into both the physical and algorithmic workings of the par-
allel tree code. A future extension will also provide selected
diagnostic quantities mapped onto a user-defined mesh, such
as charge density, current, electric fields and laser intensity.

A further implemented feature is a capability, in which
the particle beam or laser parameters (charge/intensity, di-
rection) can be altered by the user interactively while the
application is running. This is particularly useful in veri-
fying start-up parameters such as the initial alignment of
laser and target, or for performing quick trial runs with re-
duced number of particles as a prelude to full-blown pro-
duction. Another example where this capability can save
a lot of trial-and-error run-time is in determining equilib-
rium plasma states for arbitrary geometry (slab, spherical,

VISIT-based online-visualisation of a

Figure 3:
PEPC simulation; a plasma hit by a particle beam.

cylindrical etc.). Thus, the user can ’assist’ an initially ran-
dom plasma system towards a cold, ordered state suitable
for use as quiescent initial conditions in a laser interaction
simulation.

A demonstration of the prototype implementation of the
VISIT extension to UNICORE will be the main part of the
presentation. A parallel simulation of a laser-plasma in-
teraction with PEPC (see Figure 3.4) will be started under
control of UNICORE. Intermediate results will be visualized
with the AVS/Express based steering application, allowing
parameters of the running simulation to be modified on the
fly. All Access Grid Constellation, Satellite and Observer
Sites will be able to watch the demo without having to in-
stall any additional software. The UNICORE client and the
AVS/Express control panel will be made available via vnc
while the AVS/Express 3D visualization will be fed into a
standard vic video stream. If feasible, the collaborative fea-
tures of the system will be demonstrated, too. However, in
order to take part in that demo, an Access Grid node will
have to install AVS/Express. Those nodes could take part as
passive viewers; the AG node in Phoenix would be granted
full access.

4. INTEGRATION OF A COLLABORATIVE

ENVIRONMENT WITH ACCESS GRID

The third demonstration, contributed by HLRS, will be
based on the integration of the collaborative visualization
and simulation environment COVISE [?] with the Access
Grid. We first discuss the design decisions of such an en-
vironment before explaining its usage potential when inte-
grated with the Access Grid.

4.1 Requirementson a Collaborative Environ-
ment for Application Steering
Collaborative working applied to the steering of ongoing

simulations is a highly interactive process that requires fast
turn around times of multiple feedback loops. It is assumed,
that not only the simulation is performed on a remote high
performance computer but also post processing steps up to
the rendering of images might be executed in a distributed
environment. The design of the distributed software archi-
tecture has a strong influence on its characteristic behaviour
regarding time delays on interactions, responsiveness in a
collaboration process but also scalability with increasing vol-
umes of data.

4.2 Reaction Times of the Rendering Feed-
back Loop

The highest demand on the reaction time is given when
visualizing simulation results in a virtual reality environ-
ment such as a CAVE. When a user moves, the whole scene
content has to be redrawn from the perspective of the new
viewer position with at least 10 to 15 updates per second.
In case of a remote rendering the new viewer position first
has to be transmitted to the rendering side where the new
image is generated, compressed, transmitted back to the
viewing station, decompressed and finally displayed. Just
taking the communication delays as well as the compres-
sion and decompression times into account, without consid-
ering the rendering times, these already exceed the required
turn around time. Therefore typical distributed virtual en-
vironments work with local scene graphs using local graphics
hardware for rendering. For collaboration in a distributed
virtual environment the positions of participants are sent
out. In a local scene display the other participants are rep-
resented by avatars. Thus it is barely noticeable if a delay
in updating an avatar position appears.

When using a desktop workstation for visualizing the con-
tent the requirement on maximum delay until the scene is
rerendered from a new perspective is less demanding than
in a virtual environment. At least 3 to 5 frames per second
should be reached with one frame delay to react on scene
interactions. In a collaborative session it is expected that
all participants share the same viewer position providing the
same content as a basis for discussion. A variation of one
frame does not influence a discussion process, while multiple
frames difference in the discussed visual content might lead
to misunderstanding and thus result in unusable working
conditions. Taking large volumes of time dependent simu-
lation data into account as well as larger variations in net-
working bandwidth and delays for different participants in a
collaborative session such differences in currently visualized
content become very likely.

Therefore a group collaboration environment for high end
simulation steering needs to handle such synchronization is-
sues.

4.3 Reaction Times of the Post Processing Feed-
back Loop

The collaborative analysis of a simulation is an explorative
process which requires modifying parameters of a visualiza-
tion tool such as a cutting plane position or apply different
tools in the evolving exploration. Collaborating partners al-
ways need to have the same state of information about the
overall system and need to be able to change roles, i.e. ac-
tively steering the exploration process or passively watching
but participating in the discussion. The delays until a pa-
rameter change in a visualization tool leads to an updated

scene content can vary strongly and be in the range of parts
of a second to multiple seconds. The more stringent require-
ment here is, that the update takes place at the same time
at the different participating sites of a discussion. With a
local feedback loop involving the generation of a new cut-
ting plane and rendering it, depending on the interaction
in a virtual environment, it is possible to have 15 or more
frames per second with modified content. In a collaborative
environment such scene update rates are only possible if the
generation of the new content is done locally and only syn-
chronisation information such as the parameter set for the
cutting plane determination is exchanged.

4.4 Reaction Times of the Simulation Feed-
back Loop

The still acceptable delay on the modification of simula-
tion parameters is defined by the time a human being is
able to stay mentally in the model world of the simulation
without noticing any reaction or activity of the system. Ex-
periments showed that people can tolerate delays of up to a
minute while waiting for new simulation results. This toler-
ance can even be increased if intermediate results like from
an iterative solver are displayed in-between. For outstand-
ing actions that don’t show an effect over tenth of seconds
or more the scientist needs a visual reminder that there are
still ongoing activities. A common approach is the usage
of the hourglass icon for the cursor or an indicator for the
remaining time to wait. Also here it is required for a col-
laborative session that the modified visual content appears
synchronously to prevent discussion on inconsistent content.

4.5 COVISE Characteristics

COVISE has been developed since 1993 in a series of Eu-
ropean projects initially in collaboration with aeronautics
industry and research organizations. Together with the au-
tomotive, aerospace, and mechanical engineering industry
it has been applied as an integration platform for the sim-
ulation process chain covering grid generation, simulation
and post processing. The common characteristic of these
projects was, that distributed engineering groups work col-
laboratively to avoid their relocation.

Thus the design criteria for COVISE were to support col-
laborative working of specialists analysing simulations per-
formed on remote supercomputers. A distributed software
architecture has been developed that allows to execute and
control process chains involving multiple computers which
extends beyond a client server approach. By integrating
simulation and visualization into one homogeneous environ-
ment and controlling all distributed processes from one user
interface, simulation steering is inherently available from the
outset. COVISE has especially been optimized for efficient
network transfer [?] and high performance computing en-
vironments [?]. The user interface is based on the visual
programming paradigm as used also in other visualization
packages such as e.g. AVS. Distributed applications can be
built by combining modules (modeled as processes) from
different application categories on different hosts to form
module networks. At the end of such networks the ren-
dering step performs the final visualization. This applica-
tion building step is done in the Map-editor module, the
central user interface of COVISE. Session management for
adding new hosts and synchronizing the tasks in the module
network is done in a central controller which has the only

knowledge about the whole application topology. Request
brokers on each participating host take care of data man-
agement, efficient data transfer and conversion between dif-
ferent platforms. COVISE in contrast to other visualization
systems uses the notion of data objects instead of relying on
a pure data flow paradigm. The underlying data manage-
ment takes care of assigning system-wide unique names to
data generated during a session in the shared data spaces:
the shared data space (SDS) is used on a single host for the
exchange of data objects between the locally running mod-
ules to minimize copying overhead. On most platforms this
is realized as shared memory communication. Between het-
erogeneous hardware platform data type conversion is done
by the request brokers which is thus invisible for the appli-
cation modules. Scientific data is handled as data objects
which have attributes such as names and lifetime. They rep-
resent grids on which dependent data is defined. Dependent
data such as temperature or velocity themselves are again
data objects.

In a collaborative session all partners see the same screen
representations at the same time on their local workstation.
The results of the visualization as well as user interactions
are displayed in a synchronized way at each site. Visual in-
teractions with steered applications are handled in the same
manner. Standard audio/video conferencing tools such as
vic and rat and shared whiteboard tools have always been
used for a discussion support.

4.6 COVISE and Access Grid

As we already had developed a collaborative steering en-
vironment that also extends towards virtual reality usage,
there was no need for a Grid based new development. Video
and Audio conferencing with simple web cams and PC based
microphone and loudspeaker proved to be a major week
point in many of the collaborative working oriented projects.
Therefore the integration of COVISE with the Access Grid,
where the audio/video conferencing issues are mainly re-
solved, provides a major benefit for COVISE.

During 2002 a special venue server compatible to Access
Grid 1.2 has been implemented that allows to start appli-
cation sessions such as COVISE consistently within the Ac-
cess Grid group collaboration sessions. This venue server
stores additional information on a per room basis which al-
lows the start-up of shared applications. Other than video-
conferencing environments, virtual environment systems are
often behind firewalls which do not support multicast and
sometimes even do NAT. Thus, we added support for uni-
cast/multicast bridges and point to point sessions.

As COVISE also supports collaborative sessions in virtual
reality it becomes possible to combine distributed virtual
environments with Access Grid discussions. For this purpose
a stereo power wall was split into a stereo projection part
with magnetic tracking support for steering and an Access
Grid part for seeing the participating sites. In Figure 4.6
the passive stereo glasses have been taken off to take the
photos.

It is obvious, that COVISE needs to be installed on all
participating sites of a session, which can be regarded as a
draw-back compared to a vanc based sharing approach, where
the application is not aware, that a collaborative session is
going on. On the other hand this approach allows a much
better scaling in the handling of large volumes of scene con-
tent such as coming from complex simulations. Additionally

Figure 4: Access Grid session with collaborative vir-
tual reality based discussion

the collaboration speed does not degrade with the volume
of displayed geometric data.

Currently the effort to port the functionality available in
our existing venue server to the actual version of the Access
Grid is determined. It is intended to have the collaborative
steering available with Access Grid 2.0 for the demonstra-
tions at Supercomputing 2003.

4.7 Application Demonstration

The demonstrations will be based on a Car Show and
Brand Representation Building. Simulations allow deter-
mining and optimizing the climatization layout of such a
building. In collaborative visualizations architects, man-
agers and engineers performing the simulations are able to
discuss the building layout and its implications on the clima-
tization. Furthermore the behaviour of visitors of such build-
ings will be simulated and analyzed. In collaborative ses-
sions it will be possible to discuss alternative building and
exhibition layouts to steer the visitors and potential cus-
tomers into certain regions of the building. The demonstra-
tions represent a collaboration between HLRS and Daim-
lerChrysler who contributed the architectural design pro-
cess for their Auto Houses as well as with Sandia National
Labs related to the behavior of people in complex building
structures. Architectural discussions in distributed virtual
environments such as coupled CAVE-like environments are
performed already now. The integration into the AG should
enhance the group collaboration capability and make such
technologies accessible to a larger community.

S. CONCLUSION

The integration of the computational and visualization
power available over the Grid will be the main contribution.
This extends the collaboration side of the Access Grid to in-
corporate the modeling of reality via simulation. When sev-
eral researchers are located in the same visualization theatre
or clustered around a workstation, collaboration is trivial -
we do not even need to think about the protocols involved as
they have become second nature over a lifetime of interac-

tion with other human beings. Without co-location, the loss
of human-human interaction seriously impairs the collabora-
tive experience. With substantial effort, it is possible to in-
troduce software that partially replaces these human-human
interactions with machine-mediated mechanisms. However,
Access Grid technologies link separate locations into a vir-
tual environment, effectively re-instating the audio and vi-
sual inputs on which human beings are so dependent. We
can therefore go a long way towards creating an effective en-
vironment for distributed, collaborative computational steer-
ing and visualization by integrating our user interfaces with
Access Grid. The integration of a collaborative visualization
and simulation environment, that scales from desktop user
interfaces to immersive projection environments, with the
AG, will enable group collaboration usage modes that also
range from monoscopic large projection walls to stereoscopic
immersive hardware set-ups. Also heterogeneous setups are
supported such as the coupling of typical AG rooms with
AG enabled CAVEs. Working in such environments should
improve the understanding of its influence on the group col-
laboration process. Human factors issues in discussion pro-
cesses have to be analyzed for such setups. SC2003 demon-
strations will showcase the coupling of remote AG enabled
CAVE like environments with show floor environments.

We consider that this collaborative aspect of the Grid has
been somewhat eclipsed by the data grid and task farming
applications which currently seem to dominate Grid comput-
ing. Examples are multiple task farming of gene-sequencing
algorithms, parameter space searches, analysis of huge vol-
umes of data from large-scale particle physics experiments.
These are very valuable uses of Grid computing, but they are
not the only possible ways to utilise Grid resources. Here we
show an alternative use, namely the incorporation of special-
ist massively parallel supercomputers and specialised visual
supercomputers into a distributed collaborative working ses-
sion.

We have shown also that this can be done in the context of
the proposed Open Grid Services Architecture Framework.
The RealityGrid demonstration, in particular, is run as an
OGSA-compliant Grid service. We are even able to run
this using Globus Toolkit 2 and UNICORE which are pre-
OGSA systems, by the creation of a very lightweight hosting
environment, OGSA:Lite. This will enable applications cur-
rently running on the many Grids that currently utilise GT2
and UNICORE to explore the potential of the OGSA frame-
work which the full OGSA systems such as GT3 are being
developed.

Finally, we have shown that the feeling of live human pres-
cence captured by Access Grid can co-exist with the use
of the Computational Grid to access large scale resources.
This brings supercomputing to the collaborative distributed
meeting environment and will provide a new and exciting
way for geographically distributed research groups to im-
prove their scientific productivity. We can speculate that in
the not too distant future, a major scientific breakthrough
will be achieved in a live collaborative session. Then, one
could say that the use of the word Grid in Access Grid is
fully realised.

6. ACKNOWLEDGMENTS

The RealityGrid work was carried out as part of one of the
Pilot Projects in the UK e-Science program (EPSRC Grant
GR/R67699). RealityGrid also acknowledges the very help-

ful advice and cooperation of the Access Grid and vtk de-
velopment teams in the MCS group at Argonne National
Laboratory. We also thank Dave Snelling of Fujitsu Labo-
ratories Europe for the help in the protype OGSA steering
demonstrator. We acknowledge the donation of computing
resource by the CfS consortium via the CSAR service run-
ning as part of the UK e-Science Grid.

