FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fir Angewandte Mathematik
D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

VISIT - a Visualization Interface Toolkit

Version 1.0

Thomas Eickermann, Wolfgang Frings

FZJ-ZAM-IB-2000-16

Dezember 2000
(letzte Anderung: 12.12.2000)

Contents

1 Introduction

11

Credits and Copyrights

2 General Concepts of Visit

2.1
2.2
2.3
2.4
2.5
2.6

Conventiom
Client — Server Connections
VisitRequests
Message envelope...
Messagedata
VisitandPerl5.

3 The Visit Client API

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Usage
visitconnect
visitconnectto_host
visitconnecttofile
visitdisconnect
visitconfigure
visitsend4d
visitsend4dos
visitsendstring
visitrecvdd
visitrecv4dos
visitrecvustring

4 The Visit server API

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Usage
visitsnvinit_socket.
visit snvinit_socketraw
visitsnvinit_file.
visitsrv.connect
visitsrv.disconnect.
visitsrv.shutdown
visitsrv.getid
visitsrv.getrequest
visitsrv.readdata
visitsrv.writedata
visitsrvack2
visitsrv.configure
visitsrv_socketlsd, visit srv.socketcsd,

©~No OO (5

CONTENT

S

The AVS/Expressvisit—server

VISILSEIVEr. e e
visitreader. e
VISItWrIter e e
multiplexer
VISILSEIVEr e e
VisitReader. e
VisitWriter e e
Multiplexer e e e e

51
5.2
53
5.4
5.5
5.6
5.7
5.8

seap — the service announcementprotocol

6.1

6.2 Theseap client functions
6.2.1 Usage
6.2.2 seapublish
6.2.3 seapunpublish
6.2.4 seamuery
6.3 seap demo clients

Theseap—server

Tools

7.1 seap — monitoring thasap—server
7.2 vbroker — attaching multiple visualizations
7.2.1 The 'Client connection / Simulation’ panel
7.2.2 The 'Server connections / Visualizations’ panel
7.2.3 Example session

Demo Programs

8.1 Test clients and servers

8.2

Installation and Porting
Prerequisites e
Quick Installation
Test the installation,
Configure options

Porting hints e
9.5.1 Fortran issues
9.5.2 Data types on new platforms
9.5.3 Defining new data types

9.1
9.2
9.3
9.4
9.5

8.1.1 vclient.c
8.1.2 vserv.c
8.1.3 vclient.pl

8.1.4 vserv.pl, tkserv.pl
8.1.5 VisitSimpleEg (AVS/Express)

8.1.6 fvclient.f

8.1.7 sclient.c, querytime.c
GameofLife e
8.2.1 VisitGoLEg (AVS/Express)

8.2.2 tkgol.pl

List of Figures

4.1
51

7.1
7.2

8.1
8.2
8.3
8.4

schematic diagram of a simplisit—server. 24
AVS/Express network which uses the visit macros and the Panel of the visitserver
MACIOD. o ot e e e e e e e e e e e e 34
seap displaying a couple of services related to the Game of life demo. 53
VBroker client and server panels in a typical Game of Life session as described in

the example section 7.2.3. 54
Visualization and steering for the Game of Life simulation with AVS/Express. . . . 60
Top-level network for thisexample. 61
Network for the communication between AVS/Expressandcgol. 61
Visualize and steer the Game of Life simulation with Perl/Tk 62

LIST OF FIGURES

Visit - Visualization Interface Toolkit
Seap - Service Announcement Protocol

Copyright (C) 2000, Forschungszentrum Juelich GmbH, Federal Republic of Germany. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

e Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

e Any publications that result from the use of this software shall reasonably refer to the Re-
search Centre’s development.

¢ All advertising materials mentioning features or use of this software must display the follow-
ing acknowledgment:

This product includes software developed by Forschungszentrum Juelich GmbH, Federal Re-
public of Germany.

e Forschungszentrum Juelich GmbH is not obligated to provide the user with any support, con-
sulting, training or assistance of any kind with regard to the use, operation and performance
of this software or to provide the user with any updates, revisions or new versions.

THIS SOFTWARE IS PROVIDED BY FORSCHUNGSZENTRUM JUELICH GMBH "AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL FORSCHUNGSZENTRUM
JUELICH GMBH BE LIABLE FOR ANY SPECIAL, DIRECT OR CONSEQUENTIAL DAM-
AGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR
PERFORMANCE OF THIS SOFTWARE.

Chapter 1

Introduction

With the increasing capabilities of both supercomputers and graphical workstations new modes
of operation become feasible for numerical simulations that are traditionally performed in batch
processing. Connecting a workstation to a compute—server allows for interactive monitoring and
control of such simulations. Buzz-words in that field antine-visualization, interactive simula-

tions, or computational steering. Of course, there is a need for programming tools that support
the development of interactive applications. A couple of such tools is freely available from various
institutions (CUMULVS, CSE, SCIRun, OVID). But when — during the "Gigabit Testbed West”
project, a testbed for the new German Gigabit Science Network, the G-WiN — the need for such a
tool arose, we found them being either to simplistic or to complex and decided to develop our own
tools, namediisit (visualizationinterfacetoolkit). What we needed is basically a set of functions
that allow for establishing a connection between simulation and visualization, exchanging data and
eventually shutting down the connection again. Basic design considerations were:

e The simulation is considered 'more important’ than the visualization (CPU—time on super-
computers is expensive) and therefore should be disturbed as little as possible by failures or
slow operation of the visualization. This means that all operations (like sending data to be
visualized or receiving new parameters) have to be initiated by the simulation and are guar-
anteed to complete (or fail) after a user—specified timeout. The visualization acts as a server
that dispatches the simulations requests.

¢ It should be possible to transfer at least simple datatypes like strings, integers and floats and
arrays of integers and floats. The implementation should not inhibit later extensions.

e Data conversions should be performed transparently for the user. However, since most mod-
ern architectures use IEEE format, this is restricted to byte-order conversions (to avoid ex-
pensive conversions into external data representations like XDR).

e The simulation should be able to connect to the visualization using "service—names” rather
than host—name and port—number. This on the one hand allows to avoid port—number conflicts
and on the other hand enables the user to start the visualization on any workstation (or even on
different workstations, one at a time). However, this requires some kind of naming—service.

e The data—transport should use IP, the only protocol that is available on all platforms, but the
API should allow for other mechanisms that we may implement in the future (e.g. MPI, using
the MPI-2 process attachment or low—level network protocols like Myrinet).

e |t should be possible for a simulation/visualization to connect to more than one partner at a
time.

e For the simulation, language bindings for at least C and FORTRAN are a must.

¢ In the Gigabit Testbed applications, mainly AVS/Express was used for visualization. The
completevisit—functionality should be available through AVS/Express modules so that there
is no need for the Express programmer to write extra C—code to access them.

4 CHAPTER 1. INTRODUCTION

e Both the API and the implementation should be lean, to simplify usage and porting to new
platforms.

e Security was considered a minor issue ¥asit. Authorization of simulation and visualiza-
tion is based on a user—specified password. All data (including the password) is transmitted
without any encryption. This will be changed in a later version.

Bundled withvisit is a simple hame—service namgghp (service announcemenprotocol). A vi-
sualization can register its service(s) ateap—server. The simulation can query this information
(consisting of a host—-name and a port—number) and use it to connect to the visualization. Currently,
theseap—server is implemented in perl and has no access—restrictions. Anyone can register services.
Anyone who knows the passwd associated with a service can query and unregister this service.

The current implementation ofisit uses TCP/IP sockets for the connection between simulation
and visualization. Besides that, it is also possible for the simulation to write the data to a file and
for the visualization to read the data from such files, using the same send/receive calls as for a
socket—connection. This is intended to be used for offline—visualization, where the simulation data
is recorded in advance. For the simulation, the API consists only of a few function calls, making it
very easy to usgisit in a simulation. Language bindings are available for C, FORTRAN, and Perl.
For the visualization—sidesisit has language bindings for C and Perl. The distribution contains
demo clients and servers in all supported languages. A complete server for AVS/Express is also
included.

The rest of this document is organized as follows. The next sections descritisithP| for the
simulation (client) and visualization (server) side for all language bindings. One section is dedicated
to seap. After that, the demo programs included with the source distribution are discussed. The last
part contains installation instructions and hints for porting.

1.1 Credits and Copyrights

visit usesminilzo, which is part of the LZO-library by Markus Franz Xaver Johannes Oberhumer.
LZO is free software that is distributed under the terms of the GNU General Public License (either
version 2 or any later version).

visit itself is copyrighted software of the Research Centtecli ' GmbH. It can be downloaded from

the Research Centres web—server:

http://ww.fz-juelich. de/zam Angebot e/ Angebot e-e. ht m

It can be used and redistributed under the conditions stated in the DISCLAIMER file that is con-
tained in the distribution. The AVS/Express modules are also available at the IAC.

Chapter 2

General Concepts of Visit

vigit is a library for point—-to—point communication between two independent applications (like a
simulation and a visualization) using a client—server model. Buildikigig-client is as simple as

file I/O using open, read, write, and close. To implemevisid—server is slightly more complex, but
supported by a 'server—toolkit’ that is part of the library. Mt API abstracts from the underlying
network protocol, so the same functions can be used for different types of communication.

2.1 Conventions

Due to the client—server architecturevi$it we will use the termsisit—client andvisit-server (or
just client and server) for the simulation and visualization parts of a coupled applicatiorvissing
This also reflects the fact that the usageisit is not limited to steering and interactive simulations.

In the description of the API we use the following typesetting rules. For each function, the C
function declaration, the FORTRAN subroutine header and the Perl-Call are given. Parameters with
equal names have identical meanings in all language bindings. Following this declaration, there is
a short description for each parametesit is implemented in C. Our goals to build the FORTRAN
bindings as a thin layer on top of the C implementation, to be compatible with FORTRAN 90, and
to keep it portable, lead to some compromises.

C functions which return a status will return 1 in case of success and 0 otherwise. Functions that
return a non-negative integer (like a connection descriptor), will return -1 in case of an error.
Functions that return a pointer will return NULL in case of an error.

Constants are defined as macros in the headex4fide t . h

FORTRAN bindings use subroutines not functions. For all functions that are non—void in C, the
subroutine returns a status (0 or 1) in the last parameter IERROR. If the C—function returns
more than just a status, the subroutine returns that value in its first parameter.

Constants are defined as parameters in the headdrvilsi t . h

Perl bindings are more Perl-stylish object—oriented. Parameters are generally named like e.g. in
the Perl-Tk modules. This allows for default arguments and some function overloading. In
the description, optional arguments are placed in brackgts The default values are put in
parenthesis. If a C—function returns a status, the corresponding Perl—function will also return
0 or 1. For C-functions that return more than a status (and -1 or NULL in case of an error) the
Perl-function will return 'undef’ in case of an error. For both C and FORTRAN, connections
and other 'objects’ are accessed via integer descriptors. In Perl, object references are used
instead.

The message data can either be stored in standard Perl arrays which is not very efficient
for large amounts of data (mainly in terms of memory usage) or in a packed binary form.

6 CHAPTER 2. GENERAL CONCEPTS OF VISIT

However, handling arrays with a few thousands of elements is no problem.

Instead of the integer constants in C and FORTRAN, strings are used (&Ng32' instead
of VISI T_INT32 (=2)).

2.2 Client — Server Connections

The communication betweessit—server and —client is connection—oriented. This means that client
and server must explicitly establish a connection before they can exchange data.

In detail, thevisit—server will perform all the initializations that are required to be able to accept
clients. After that he will register his service at theap—server (the information a client needs

to find the server is associated with a service—-name and a keyjsitAclient queries theseap—

server for this data (by specifying service—name and key) and connects\aitheerver. During

the startup, client and server negotiate certain parameters of the connection (like byte order and
authorization).

E.g. in the TCP/IP case, thisit—server will open a listening socket and then register its hostname
and portnumber at theeap—server. Theisit—client queries these parameters from skap—server

by specifying the service—name and key. The client the connects tostheserver and authorizes
himself by sending the key.

Once established, a connection stays open, until it is either explicitly shut down by one of the part-
ners, a partner dies or exits. Currenthisit does not contain sophisticated error-recovery mech-
anisms. When one of the partners detects an error during communication (timeouts or invalid
response from the other partner) he shuts the connection down.

2.3 \Visit Requests

After the connection is established, client and server can exchange messages. Such a message
consists of an envelope and the actual data. The envelope contains meta—information like message
size and type (see below for details). It is always the client who initiates a message transfer by
sending a request to the server, no matter in which direction the message will flow. The first action

of the client is to check whether the server is ready to accept a request. (It is a property of the
connection, how long the client will wait for the server to respond until he assumes that the server

is not ready.) If the server is ready, the client proceeds, otherwise the request is canceled.

In case of a send request, the client then sends a message id, the message envelope, and the data.
In case of a receive request, he sends just the id and an envelope. The server responds by sending
back a message consisting of envelope and data. It is not guaranteed that this message matches the
requested one. However, to avoid buffer overflows, the client rejects messages that are larger than
requested.

2.4 Message envelope

Currently, a message envelope contains the following data. Due to the limitation to at most 4D—
arrays, the size of the envelope is constant. Depending on the actual dimension, not all entries may
be significant.

2.5. MESSAGE DATA 7

ti mestanp a float value (no specific meaning).

vtype an integer value that specifies the type of the message data. This value is used
to calculate the size of the message and to perform necessary format conver-
sions between client and server (see below for a list of supported datatypes).

ndi m the dimensionality of the message data. The dimension may be 1, 2, 3, or 4
(1 for a scalar).
nl array extension in the first dimension (1 for a scalar)
n2 array extension in the second dimension (not useudifm<2)
n3 array extension in the third dimension (not useddi m<3)
n4 array extension in the forth dimension (not usechdi m<4)
ol offset in first dimension (no specific meaning)
02 offset in second dimension (no specific meaning)
03 offset in third dimension (no specific meaning)
o4 offset in forth dimension (no specific meaning)
sl stride in first dimension (no specific meaning)
s2 stride in second dimension (no specific meaning)
s3 stride in third dimension (no specific meaning)
s4 stride in forth dimension (no specific meaning)
For correct message delivery, the paramete¢ngpe, ndi m nl, ... n4are significant. The

other parameters are for convenience only. Theest anp is intended to identify a data—set in

a series of similar data, as it often occurs in simulationkf set andst ri de are intended to
indicate that the transmitted data is only part of a larger field (starting at an offset, and being sub—
sampled with a stride). However, these parameters can be used for other purposes or be ignored
completely.

2.5 Message data

Currently,visit is able to transfer strings and arrays of integer (1, 2, or 4 bytes) and floating point
(8 byte) numbers. An array may be no more than 4—dimensional. Scalar values are treated as a
1-dimensional arrays of length 1. The reason for the limitation in the dimension is to make the API
simpler — and not laziness as you may suspect (this affects mainly the AVS/Express modules). We
choosed 4 as a limit because in visualization one usually deals with at most 3D—data. The forth
dimension can e.g. be used to transfer 3D—vector—fields or time—series of 3D—data.

Currently the following datatypes are supportedvist:

datatype C, FORTRAN name Perl name
64-bit floats (typically double) VI SI T_FLOAT64 | ' FLOAT64’
32-bit integers (typically intorlong) | VI SI T_I NT32 "I NT32’
16-bit integers (typically short) VI SI T_I NT16 "I NT16’
8-bit integers (typically unsigned char)vl SI T_BYTE " BYTE
O-terminated C-strings VI SI T_STRI NG " STRI NG

The values in the second and third column are the values/names under which the types have to
be specified in thet ype—parameter of the envelope. Not all datatypes may be available on all
platforms (e.g. T3E is lacking INT16).

visit provides automatic byte order conversions between client and server if necessary. Currently,
this is the only data conversion between client and server. It is always performed by the server
following the idea that the extra load on the client (the simulation) should be as low as possible.
This means that in contrast to e.g. MPI, the data must have the same representation (except for the
byte order) on both sides of the application.

It is in the users responsibility to specify correct data types. E.g. on a Cray T3E the C-type

8 CHAPTER 2. GENERAL CONCEPTS OF VISIT

short matche¥! SI T_I NT32 on many other it i3/l SI T_I NT16. Currently, there is only little

help: we have typedef'd the data—typdsnt 16 andvi nt 32 in thevisit-header file to the proper
integer type — where available. Strings may be sent usdign=1 andnl=str| en(data) inC
programs. However, due to non—portable string representations in FORTRAN, there is an additional
functionvi sit _send_stri ng (see 3.9) to send strings. This function may also be used in C
programs. There is no way to transfer arrays of strings with a single function call.

In C and FORTRAN it is generally assumed that the data is contained in a continuous piece of
memory.n1 is the 'fastest index’, therefore a 4D—array to be handlegifiywould be

a[n4] [n3] [n2] [n1] in C (and Perl) ané(N1, N2, N3, N4) in FORTRAN. Thedat a—para-

meter of thevisit functions has to be the address of the first data item.

2.6 Visit and Perl5

The Perl interface taisit is different from the C and FORTRAN bindings. We tried to keep it
closer to what is common practice for many OO-style Perl modules. As already mentioigg; a
connection is represented byasi t —object in Perl, not by an integer descriptor like in C and
FORTRAN. Therefore, most of thésit—functions are object—-methods in Perl. Generally, all pa-
rameters to those methods are 'named’ (}ike mest anp => 1. 1)instead of 'positional’. With
respect to the envelope, there are two other differences. The first is related to the dimension, offset,
and stride. Instead of 'unrolling’ these parameters in the parameter list of the methods, the Perl in-
terface uses references to arrays containing those valuesde.m => [$nl, $n2, ...]

instead of n1 => $nl, -n2 => $n2,

There is nndi mparameter. Instead, the dimensionality of the data is the length efithex-array.

The second difference concerns the receive functions, where envelope information has to be re-
turned to the caller. In C this is done by passing the these parameters per reference. In Perl, you
may addvar to the name of a parameter and pass a reference to the variable containing the data.
To obtain the timestamp, you would passi mest anpvar => \ $ti nest anp to a method

that receives a message. If you know what you are doing, you may choose to ignore the timestamp
that is part of the received message and use the standard farmest anp => $ti mest anp.

Note that when the parameter is already a reference, the use of this mechanism does not take a
2nd reference. It only indicates, that the envelope information should be passed back to the pa-
rameter. If you usedi nvar => \ @i m the dimensions will be returned @i m if you use

-di m => \ @i mthey will not. In the description of the API those parameters that may obtain a
var postfix are noted with{ &) .

Another thing specific to perl is how theéat a is passed. In C and FORTRAN, you pass the
address of the first element of a continuous block of memory containing all the data. In Perl, you
pass a reference to a normal 1...4-D Perl array. For the size of the arrayditn@parameter is
determining. If the array is too small or contamsdef values, the missing values are transmitted

as zeros. You may pass an optional parametdrat . If set to a true value, thdat a parameter

has to be a reference to a 1D—array of the proper size. The same holds for the methods that receive
data. A reference to a 1...4-D array is returned. With at set to true, a reference to a 1D array

is returned instead. If thef | at notation is used, the order of the data is like in C and FORTRAN:

the first element of thedi m-array is the 'fastest index'.

You may also pass an optional parametpack (that is mutual exclusive tef | at). If setto a

true value, the data will be packed into a Perl-string (for a receiving method) or has to be passed in
a packed string (for sending methods). Since the data is stored in its natural representation, it uses
far less space that an array of Perl scalars. The access to individual elements is more complicated,
it requires unpack or pack/substr to read or modify individual elements of the data.

Chapter 3

The Visit Client API

The API for thevisit—client contains just five groups of functions. These groups are connect and
disconnect for establishing and shutting down connections, send and receive for exchanging data
and configure for modifying properties of a connection.

The first group establishes connections to the server. For each protocol that is suppaitgt] by
there is at least one such function. Currently, there are functions for TCP/IP connections with
or without usingseap and for connections to files. The connect—functions are the only protocol-
dependent functions. If successful, they return an integer connection descriptor (C, FORTRAN) or
a connection object (Perl) that is used by all of the other functions to identify the connection (like a
UNIX file descriptor).

3.1 Usage

To use thevisit—client functions, put one of the following lines of code in your program:

#i nclude "visit.h" [* C*/
include "fvisit.h’ /| FORTRAN
use Visit; # Perl

CHAPTER 3. THE VISIT CLIENT API

3.2 visit.connect

int visit_connect(char *service, char *passwd, int pollinterval,
int maxpoll,int meg_tinmeout, int conn_tineout);

SUBROUTI NE FVI SI T_CONNECT(VCD, SERVI CE, PASSWD, PCOLLI NTERVAL,
MAXPOLL, M5G_TI MEQUT, CONN_TI MEOUT,

| ERROR)
| NTEGER* 4 VCD, POLLI NTERVAL, MAXPOLL, MSG_TI MEOUT
| NTEGER* 4 CONN_TI MEOQUT, | ERROR

CHARACTER* (*) SERVI CE, PASSWD

$vecd = Visit->new(-service => $servi cenane,
- passwd => $passwd,
[-pollinterval => $pollinterval, (2)]
[- maxpol | => $maxpol |, (2) 1
[-msg_tinmeout => $nmsg_tineout, (2)]
[-conn_timeout => $conn_tinmeout (-1)]

Description:

The first thing a client has to do before it can send or receive data to or from a server is to es-
tablish a connection to that serveri si t_connect usesseap to locate the server. To obtain

the contact information from theeap—server, it needs both ger vi ce—name and gpasswd.

vi sit _connect tries at mostraxpol | times (with a pause gol | i nt er val milliseconds
inbetween) to query theeap—server. If the information is not available after that time,

vi sit _.connect returns without establishing the connection. If the client is not able to contact
the server after it has obtained the contact—information fronseétye-server, the connect will also

fail. Currently, the connection is based on TCP/IP sockets, but in later versions other protocols that
can also be registered usisgap may be available. To usei si t_connect you have to have a
seap—server running somewhere at your site. Hosthaseap_ser ver) andport_nunber of

this seap—server also have to be specified.

Two parameters that influence the general behaviorvi$§ig-connection aresg t i neout and

conn_t i meout . Whenever the client starts a send or receive request, it will return if the server
has not responded to that request afteg_t i meout milliseconds. The assumption is that the
server is busy and it does not make sense to block the client any longer. The connection remains
open for later usage in that case. If a server has responded to a request, but the request could not
be completed afteconn_t i meout milliseconds, it is assumed that something has gone bad at

the server and the connection is shut down by the client. Both timeouts can be set to -1 to let
the client wait forever. Witlconn_t i neout =- 1, the visit—connection will only be shut down

when the socket dies. With these timeouts, the user can control how much delay from the server
(visualization) the client (simulation) is willing to accept.

With the functionvi si t _confi gur e (3.6) bothnsg_ti meout andconn_ti neout can be
modified.

3.3. VISIT_.CONNECT_TO_HOST

Parameters:
service a service—name that must have been published by the server.
passwd a string that is associated with the service. Unlike the service—name it

cannot be queried from theeap—server.

the seap—server is polled every 'pollinterval’ milliseconds, until the 'ser-
vice’ is available.

maximum number of polls befond si t _connect istimed out.

the client waits for at mostsg_t i meout milliseconds after initiating

a read or write request, before it assumes that the server is not ready for
dispatching this request. If that happens, the request is canceled but the
connection remains open.

when a request is not finished afteonn_t i meout milliseconds, the
client assumes that the server is hanging and shuts down the connection.

pol I'i nt erval

maxpol |
neg_ti meout

conn_ti neout

Return Values:

Binding | Success | Failure
C a non—negative connection descriptor1
FORTRAN | a non—negative connection descriptovCD=- 1 andl ERROR=0
is stored invVCD, | ERROR=1
Perl aVi sit object undef
3.3 visit.connectto_host
int visit_connect _to _host(char *host, int port, char *passwd,

int meg_timeout, int conn_tineout);
SUBROUTI NE FVI SI T_CONNECT_TO HOST(VCD, HOST, PORT, PASSWD,

MBG_TI MEOUT, CONN_TI MEOUT, | ERROR)
| NTEGER* 4 VCD, PORT, MSG TI MEQUT, CONN_TI MEQUT, | ERROR
CHARACTER* (*) HOST, PASSWD
$vcd = Visit->new -host => $host,

- port => $port,
- passwd => $passwd,
-meg_tinmeout => $msg_tineout, (2)]

$conn_ti nmeout

(-1)]

[
[-conn_timeout

);

Description:

This function is similar tovi si t_connect (see 3.2). The only difference is that it does not
useseap to obtain the hostname and port number of the server. The user has to specify those
parameters directly. The advantage is that no extra softwareddbeserver) is required. A serious
drawback (which lead us to buikap) is that ports tend to be ’in use’ by other applications or just
’hang’. With seap, free ports can be choosen by thseit—server and used by the client without user
interference. We strongly encourage you to sesp. Althoughvi si t_connect_t o_host does

not useseap a passwd has to be specified because this passwd is not only required for obtaining
contact information from theeap—server but is also required for authorization at the server. See
3.2 for a more detailed description. Please note that Perl uses the fuhMttgint - >new for
connections of all types. The type of the connection that is established depends on the parameters.

CHAPTER 3. THE VISIT CLIENT API

Parameters:
host hostname or IP—address of the server.
passwd an authorization string that is associated with the service.
port portnumber of the server drost .

nsg_ti nmeout the client waits for at mostsg_t i neout milliseconds after initiating
a read or write request, before it assumes that the server is not ready for
dispatching this request. If that happens the request is canceled, but the
connection remains open.

conn_tinmeout when a request is not finished afleonn_t i neout milliseconds, the
client assumes that the server is hanging and shuts down the connection.

Return Values:

Binding | Success | Failure

C a non—negative connection descriptorl

FORTRAN | a non—negative connection descriptfo¥CD=- 1 andl ERROR=0

is stored invVCD, | ERROR=1
Perl aVi sit object undef

3.4 visit. connectto_file

int visit_connect to file(char *filenanme, char *nopde, char *text);

SUBROUTI NE FVI SI T_CONNECT_TO FI LE(VCD, FI LENAME, MODE, TEXT,
| ERROR)

| NTECER* 4 VCD, | ERROR
CHARACTER* (*) FI LENAME, MODE, TEXT

$ved = Visit->new(-filename => $fil enane,

[-nopde => $node, ("W)]

[-text => $text (undef)]
)

Description:

This function opens a pseudo—connection. All data that is send via this connection is stored in a file.
The file is opened with modende which can be eithetw" for writing or " a" appending. This
parameter is directly passed to the C—functi@pen, so the semantics are the same. Of course,
receive—requests from a file—connection always fail. An optibeait can be used to annotate the

file. Please note that Perl uses the same fundtiosi t - >newfor file and socket connections.

The type of the connection that is established depends on the parameters.

When appending to a non—empty fitegxt is ignored. A limitation of the current implementation

is that, when appending to a non—empty file, the writer and the original creator of the file must have
the same byte ordewi si t _connect _t o_fi | e checks that condition and returns -1 if it is not
fulfilled. This means that you cannot create a file on an Intel-Linux box and append to that file on
a Sun Workstation.

Parameters:
fil ename name of the file to write to.
node specifies, whether the file should be opened for writing or for appending.

t ext an optional annotation for the file (NULL for no annotation).

3.5. VISIT_DISCONNECT

Return Values:
Binding | Success | Failure
C a non—negative connection descriptorl
FORTRAN | a non—negative connection descriptfo¥CD=- 1 andl ERROR=0
is stored invVCD, | ERROR=1
Perl aVi sit object undef

3.5 visit.disconnect

int visit_disconnect(int vcd);
SUBROUTI NE FVI SI T_DI SCONNECT(VCD, | ERROR)
| NTEGER VCD, | ERROR

$vcd- >di sconnet () ;

Description:

To close a connection to a server the client calls this function. The actual action depends on the
type of the connection. For the TCP/IP connections, e.g. the sockets will be closed. For the file—
connection, the file is closed. After calling si t _di sconnect , the connection descriptarcd
is no longer valid. It may be reused by later calls ofissi t_connect function.
Parameters:

vcd avalid connection descriptor (or Visit object in Perl).
Return Values:

Binding | Success | Failure

C, Perl 1 0

FORTRAN | | ERROR=1 | ERROR=0

CHAPTER 3. THE VISIT CLIENT API

3.6 visit.configure

int visit_configure(int vcd, int what, ...);
SUBROUTI NE FVI SI T_CONFI GURE(VCD, WHAT, VALUE, | ERROR)
| NTEGER VCD, WHAT, | ERROR

$vcd- >configure(-paraneter_nane => $new val ue);

Description:

This function can be used to modify properties of an active connection. The parameters depend on
the type of the connection. The parametbiat is an integer that specifies which property shall be
modified. Symbolic names for these integers are defined imitlse t . h andf vi si t. h header

files. The next parameter is the new value of that property. Currently, the following properties can
be modified:

socket—connections:

what \ property/parameter to chan@etype of parameter
VI SI TMSGTI MEQUT | nmeg_ti meout integer
VI SI T.CONNLTI MEQUT | conn_ti neout integer

file—connections: none!

The Perl binding uses the names of the properties/parameters (as in the new method) to change
instead of the integashat .

Parameters:
vcd avalid connection descriptor (or Visit object in Perl).
what aninteger value, specifing the parameter to change.

the new value of that parameter.

Return Values:
Binding | Success | Failure
C, Perl 1 0
FORTRAN | | ERROR=1 | ERROR=0

3.7. VISIT_SENDA4D
3.7 visitsend4d

int visit_send _4d(int vcd, int id, double tinmestanp,
void *data, visit_type vtype, int ndim
int nl, int n2, int n3, int n4, ...);

SUBRCUTI NE FVI SI T_SEND_4D(VCD, | D, TI MESTAMP, DATA, VTYPE, NDI M
N1, N2, N3, N4, | ERROR)

I NTEGER VCD, | D, VTYPE, NDI M N1, N2, N3, N4, | ERROR
REAL* 8 TI MESTAVP

$ok = $vcd- >send(-id => $id,
-data => $dat a,
-vtype => $vtype,
[-flat =1, (0)]
[-pack =1, (0)]
-dim = [$nl1, $n2, ...],
[-of fset => [$o01, $02, ...], (0, O, ...) 1]
[-stride => [$s1, $s2, ...], (1, 1, ...)]
[-tinestanp => $tinmestanp,]
);
Description:
This is the main function for sending data from the client to the server. It sends scalar values or
arrays of dimensiomdi mfrom 1 to 4. For each dimension, a size parametér (.. n4) has
to be specified. The datatype of the data must be specified as a paramgtee].
In the C-bindings, thet ype can be arithmetically or'd with the type modifiers
VI SI T_.OFFSET and/orVI SI T_STRI DE. In that case additional parametesd (... 04 and/or
sl ... s4)have to added to the parameter list. With the FORTRAN bindings you cannot use

these optional parameters. Instead, there is an additional function nanseéd_send 4d.os
which has fixed offset and stride parameters. See 2.5 and 2.4 for a detailed description of datatypes

and the 'envelope’ parametersype, ndim nl .. n4, ol, .. 04, sl .. s4,
ti nmest anp.
Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
id an id that classifies the data. The server side can use this id to identify the
data (like the message tag in MPI).
ti nestanp a parameter that is intended to further characterize the data, but has no
specific meaning.
dat a pointer to the data to be send (even if a scalar is send).
vtype the datatype of the data (see list above).
flat indicates thatlat a is a 1D array (Perl only).
ndi m dimensionality of the data, must be 1,2,3, or 4.

nl, n2, n3, n4 size of the data—array, only the firstli mvalues are used.
In Perl, it's a reference to an array witldi mentries.

0l, 02, 03, 04 optional offsets into the data—array, (s€k . n4 for validity).

sl, s2,s3,s4 optional strides of the data—array, (s€k . n4 for validity).

CHAPTER 3. THE VISIT CLIENT API

Return Values:

Binding | Success | Timed out with no data sent | Failure
C 1 0 -1
FORTRAN | | ERROR=1 | | ERROR=0 | ERROR=-1
Perl 1 0 -1
Examples:
send a

single 4-byte integer:

3D double field a[nz][ny][nx]:

vt ype=VI SI T_I NT32,

ndi m1, n1=1

vt ype=VI SI T_.FLOAT64,

ndi m=3, nl=nx, n2=ny, n3=nz

The order of the field-dimensions is 'fastest index first’, therefore in FORTRAN, the above param-
eters would apply to a fieldd(NX, NY, NZ)

3.8. VISIT_SENDA4D_OS
3.8 visitsend4d os

int visit_send 4d _os(int vcd, int id, double tinestanp,
void *data, visit_type vtype, int ndim
int nl, int n2, int n3, int n4,
int ol, int o2, int 03, int 04,
int sl1, int s2, int s3, int s4);

SUBROUTI NE FVI SI T_SEND_4D_OS(VCD, | D, TI MESTAVP, DATA, VTYPE, NDI M
NL, N2, N3, N4, OL, 02, O3, O4, S1, S2, S3, 4,
| ERROR)

| NTEGER*4 VCD, | D, VTYPE, NDI M N1, N2, N3, N4,
I NTEGER*4 O1, @2, O3, (4, S1, S2, S3, $4, | ERROR
REAL* 8 TI MESTAVP

Description:

This function has the same functionalityaissi t _send_4d. The only difference is that is has a
fixed parameter list including offset and stride. Séesi t_send_4d (3.7) for a description of the
parameters and return values. There is no Perl-binding for this function. The following calls are
identical:

visit_send_4d_os(vcd, id, tinmestanp, data,
vtype, ndim
nl, n2, n3, n4,
ol, 02, 03, 04,
sl, s2, s3, s4);

visit_send_4d(vcd, id, timestanp, data,
vtype | VISIT OFFSET | VISIT_STRIDE, ndim
nl, n2, n3, n4,
0l, 02, 03, o4,
sl, s2, s3, s4);

CHAPTER 3. THE VISIT CLIENT API

3.9 visitsendstring

int visit_send _string(int vcd, int id, double tinestanp,
void *string, visit_type vtype, int size);

SUBRCOUTI NE FVI SI T_SEND_STRI NG VCD, | D, TI MESTAMP, STRI NG, VTYPE, SI ZE,

| ERROR)
| NTEGER VCD, | D, VTYPE, SI ZE4, | ERRCR
CHARACTER* (*) STRI NG
REAL* 8 TI MESTAMP
$ok = $vcd- >send(-id => $id,
-string => $string,

[-timestanmp => $tinmestanp]
)

Description:

This function sends a string to the server. The reason to have an extra function for that is that FOR-
TRAN tends to have strange non—portable internal representations of the CHARACTER-datatype.
In C, size must be equal &t r | en(dat a) ,in FORTRAN anything not longer than the declared
length of the parameter is allowed. In C you may as wellwissi t_send_4d and send a string

as a one—dimensional character array.

Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
id an id that classifies the data. The server side can use this id to identify the

data (like the message tag in MPI).
ti mestanp a parameter that is intended to further characterize the data, but has no spe-
cific meaning.

string string to be send.

vtype the datatype of the data, currently only SI T_STRI NGis allowed, but in
later versions other string—like types may be added.

si ze number of characters in stringt(r | en(dat a) in C).

Return Values:

Binding | Success | Timed out with no data sent | Failure

C 1 0 -1

FORTRAN | | ERROR=1 | | ERROR=0 | ERROR=-1

Perl 1 0 -1

3.10. VISIT.RECV_4D
3.10 visitrecv._4d

int visit_recv_4d(int vecd, int id, double *tinmestanp,
void *data, visit_type *vtype, int *ndim
int *nl, int *n2, int *n3, int *n4, ...);

SUBRCUTI NE FVI SI T_RECV_4D(VCD, | D, TI MESTAMP, DATA, VTYPE, NDI M
N1, N2, N3, N4, | ERROR)

I NTEGER VCD, | D, VTYPE, NDI M N1, N2, N3, N4, | ERROR
REAL* 8 TI MESTAVP

($data, $ok) =

$vcd->recv(-id => $id,
-vtype (& => $vtype,
[-flat => 1, (0)]
[-pack =1, (0)]
-dim (& =>1[$nl1, $n2, ... 1,
[-offset (& =>[%01, $02, ...], (0, 0, ...)]
[-stride (& => [$s1, $s2, ... 1, (1, 1,)]
[-timestamp (& => $tinestanp]

Description:

This is the main client function for receiving data from the server. It sends read-request to the server,
asking for certain data. This request contains all the 'envelope’ information contained in the func-
tions parameters and the id. See 2.5 and 2.4 for a detailed description of datatypes and the 'envelope’
parameterstype, ndim nl .. n4, ol, .. 04, sl1 .. s4, tinestanp.

After receiving this request the server is free to send any data to the client — usually he will fulfill

at least parts of the request. To make sure that the received data does not overflow the read buffer
(dat a), vi si t r ecv_4d guarantees that the size of the received data is not larger than the size of
the original request. If the server tries to send more dataj t_r ecv_4d fails and the connection

is shut down. Whewi si t _r ecv_4d returns, the envelope parameters are updated with the data
send by the server.

In the C-bindings, thet ype can be arithmetically or'd with the type modifiers

VI SI T_.OFFSET and/orVI SI T_STRI DE. In that case additional parametesd (... 04 and/or

sl ... s4)have to added to the parameter list. With the FORTRAN bindings you cannot use
these optional parameters. Instead, there is an additional function nansed_r ecv_4d. os
which has fixed offset and stride parameters.

CHAPTER 3. THE VISIT CLIENT API

Parameters:

vcd a valid connection descriptor (or Visit object in Perl).

id an id that classifies the data. The server can use this id to identify the data
(like the message tag in MPI).

ti nestanp a parameter that is intended to further characterize the data, but has no
specific meaning.

dat a pointer to a user supplied receive buffer for the data
(in Perl a reference to an array).

vtype the datatype of the data (see listin 3.7).

flat indicates thatlat a is a 1D array (Perl only).

ndi m dimensionality of the data, must be 1,2,3, or 4.

nl, n2, n3, n4 size of the data—array, only the firstli mvalues are used.
In Perl, it's a reference to an array witldi mentries.
0l, 02, 03, 04 optional offsets into the data—array, (s€k . n4 for validity).
sl, s2,s3,s4 optional strides of the data—array, (s€k . n4 for validity).
Return Values:

Binding | Success | Timed out with no data sent | Failure

C 1 0 -1

FORTRAN | | ERROR=1 | | ERROR=0 | ERROR=-1

Perl $ok=1 $o0k=0, $dat a=undef $ok=-1, $dat a=undef

In C and FORTRAN, the envelope information of the received data is returned in the parameters.

In Perl, those parameter names that are marked (8dh have an optional postfixar . If used,

the parameter has to be a scalar reference instead of a value. In that case, the information is passed
back to the caller, otherwise it is lost (see 2.6).

3.11. VISIT_.RECV_4D_OS

3.11 visitrecv._4d os

int visit _recv_4d _os(int vcd, int id, double *tinmestanp,
void *data, visit_type *vtype, int *ndim
int *nl, int *n2, int *n3, int *n4,
int *ol, int *o02, int *o3, int *o4,
int *sl1, int *s2, int *s3, int *s4);

SUBROUTI NE FVI SI T_RECV_4D_OS(VCD, | D, TI MESTAVP, DATA, VTYPE, NDI M
NL, N2, N3, N4, OL, 02, O3, O4, S1, S2, S3, 4,
| ERROR)

| NTEGER*4 VCD, | D, VTYPE, NDI M N1, N2, N3, N4,
I NTEGER*4 O1, @2, O3, (4, S1, S2, S3, $4, | ERROR
REAL* 8 TI MESTAVP

Description:

This function has the same functionalityaissi t _r ecv_4d. The only difference is that is has a
fixed parameter list including offset and stride.

Seevi sit recv_4d (3.10) for a description of the parameters and return values. There is no
Perl-binding for this function. The following calls are identical:

visit_recv_4d_os(vcd, id, tinmestanp, data,
vtype, ndim
nl, n2, n3, n4,
ol, 02, 03, 04,
sl, s2, s3, s4);

visit_recv_4d(vcd, id, tinmestanp, data,
vtype | VISIT OFFSET | VISIT_STRIDE, ndim
nl, n2, n3, n4,
o0l, 02, 03, o4,
sl, s2, s3, s4);

CHAPTER 3. THE VISIT CLIENT API

3.12 visitrecv_string

int visit _recv_string(int vcd, int id, double *tinestanp,
void *string, visit_type *vtype, int *size);

SUBRCOUTI NE FVI SI T_RECV_STRI N VCD, | D, TI MESTAMP, STRI NG, VTYPE, SI ZE,

| ERROR)
| NTEGER* 4 VCD, | D, VTYPE, SI ZE, | ERROR
REAL* 8 TI MESTAWP
CHARACTER* (*) STRI NG
($string, $ok) = $vcd->recv(-id => $id,
-si ze (& => $size,
-vtype => ' STRI NG ,

[-tinestanp (& => $tinestanp,]
);

Description:
This function requests a string from the server. The reason to have an extra function for that is
that FORTRAN tends to have strange non—portable internal representations of the CHARACTER-
datatype.si ze contains the maximum allowed number of bytes to storetini ng. In C you
may as well us@i si t _r ecv_4d and ask for a one—dimensional character array.
Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
id an id that classifies the data. The server side can use this id to identify the
data (like the message tag in MPI).
ti mestanp a parameter that is intended to further characterize the data, but has no spe-
cific meaning.

string string to be received.

vtype the datatype of the data, currently only SI T_STRI NGis allowed, but in
later versions other string—like types may be added.

si ze number of characters in stringt(r | en(dat a) in C).

Return Values:

Binding | Success | Timed out with no data sent | Failure

C 1 0 -1

FORTRAN | | ERROR=1 | | ERROR=0 | ERROR=-1

Perl $ok=1 $o0k=0, $dat a=undef $ok=-1, $dat a=undef

In C and FORTRAN, the envelope information of the received data is returned in the parameters.

In Perl, those parameter names that are marked (8dh have an optional postfixar . If used,

the parameter has to be a scalar reference instead of a value. In that case, the information is passed
back to the caller, otherwise it is lost (see 2.6).

Chapter 4

The Visit server API

Implementing avisit—server is typically more complex than includingsit—client functions into

an application. One reason is that servers don't follow a predefined execution path but have to
respond to client requests. This is similar to the way a GUI responds to user actions. In many GUI
building toolkits, you register callback functions that shall be executed when certain events occur.
The management of events and callbacks is typically performed by a 'mainloop’ function which is
part of the toolkit and takes control over the application.

A simplevisit—server would work in a similar way. In an outer loop, the server would wait for client
connections. In an inner loop, the client-requests (identified by their request—id) would have to be
dispatched. However, you have to code that loop yourself, since there is no predefined mainloop
function invisit. The reason behind this is thatiagit—server is intended to be part of a visualization

or steering application — and has to cooperate with a GUI toolkit that already has control over the
application.

Therefore the GUI must be able to recognizgt—events. Unfortunately, how (and if at all) that can

be done depends on both the GUI toolkit andisg—protocol. Fortunately, there is currently only
onevisit—protocol, based on TCP/IP sockets. And probably almost every GUI toolkit has the ability
to register callbacks for I/O-requests like socket—connect requests or new data being available at
a file, pipe, or socket. Pre-build servers that demonstratevisiiwvorks with AVS/Express and
Perl/Tk are part ofisit. If you want to use other GUI-toolkits you are on your own. However, with

the AVS/Express and Perl/Tk code as examples, you should be able to succeed.

Implementing avisit—server that does nothing but dispatchingt—requests is simple. See the test
programs/ser v. ¢ andvser v. pl for examples. The general procedure is outlined in figure 4.1.
Thevisit—server is started with a call to a protocol-dependent init—function.

Similar to thevisit—client API, where only the connect—function is protocol-dependent, the init—
function is the only function which is explicitly depending on the protocol. (As noted above, there is

an implicit dependence on the protocol, when the server has to respond to requests asynchronously.)
After initialization the server is ready to connect to a client. When such a connection has been estab-
lished (withvi si t _srv_connect) the server can respond to the client’'s requests. As discussed

in section 2, a request is always initiated by an id sent by the client. This id is followed by a message
envelope that contains format information about the message. In case of a send-request, the client
sends the data that has been described by the envelope. In case of a receive-request, the server
sends back an envelope and message data. When the server is ready to dispatch the next request he
informs the client about that by sending an acknowledgmensit_srv_ack?2).

In the rest of this section, all functions of thisit server toolkit are described. We don'’t provide
FORTRAN language bindings for the server toolkit (who would want to do that ?).

23

CHAPTER 4. THE VISIT SERVER API

void main()

visit_srv_init_*

until user wants to exit

visit_srv_connect

until disconnected by client

visit_srv_get_id

visit_srv_get_request

send request ?
TRUE FAL SE

visit_srv_read data visit_srv_write_data

visit_srv_ack2

visit_srv_disconnect

visit_srv_shutdown

Figure4.1: schematic diagram of asimple visit—server.

4.1 Usage

To use the visit—server toolkit, put one of the following lines of code in your program:
#include "visit_srv.h" [* C*/

use VisitSrv; # Perl

4.2 visit_srv_init_socket

int visit_srv_init_socket(
char *service, char *passwd, char *host, int port,
int flags, int conn_tineout,
void (*di sconnect _cb)(visit_srv_connection *, void *),
voi d *di sconnect _cb_arg,
void (*shutdown_cb)(visit_srv_connection *, void *),
voi d *shutdown_cb_arg);

$vsrv =
VisitSrv->new -service => $servi cenane,
- passwd => $passwd,
[-host => $host, ('*')]
[-port => $port, (0)]
[-seap_node => $seapnode, (TOGGLE)]
[-conn_tinmeout => $conntineout, (-1)]
[-disconnect_cb=> [\&disconnect_ch, @b_args],
(undef)]
[-shutdown_cb => [\&shutdown_cb, @b_args],
(undef)]

)

4.2. VISIT_SRV_INIT_SOCKET

Description:

This function creates a socket—based visit—server by opening a listening socket on port port
on the interface specified by host. host can be given in any form that is accepted by the
get host bynane function (an IP-address or a name that can be resolved to such an address).
With host =’ *’ | the systems hostname is used instead. If the port is not available, the port num-
ber isincreased until a free port is found. When the socket is listening, the host and port are
published at the seap—server using the ser vi ce and passwd parameters. A client only needs to
know servicename and passwd to contact the server (see section3.2). Theconn.t i neout param-
eter works similarly to the same parameter on the client side. When arequest that has been initiated
by the client is not finished after conn_t i meout seconds, the server assumes that the client is
dead and shuts down the connection. There is currently only one feature controlled by the f | ags
parameter. If f | ags isset to VI SI T_SRV_SEAP_TOGGLE, the service is unpublished after aclient
has connected to the server and published again, after the client has disconnected. Otherwise the
service remains published. In any case, the service is unpublished when the server is shut down (by
Vi si t _srv_shut down). Inthe Perl API, the parameter - seap_node replaces the flags. Here
"TOGGLE' isdefault. Use- seap_node => 0 to switch it off.

The callback parameters are important for the interaction with other tools. If set to non-NULL, they
are called when a disconnect or shutdown is performed before anything else is done. This is not
only done, when a disconnect/shutdown is called explicitly by the user, but also when this occurs
automatically due to an error. This mechanism can be used to unregister socket—events (that may
be registered for a GUI toolkit) before the sockets are closed by the visit—server. A visit—server uses
two sockets for that purpose. Oneis listening for connections. It is opened at init-time and closed
at shutdown—down. It is listening only when there is no active connection. shut down.cb will
typically be used to remove a callback for that socket. A second socket receives the message ids
from the client. di sconnect _cb will typically be used to remove a callback for that socket.

Upon success vi sit _srv_i ni t _socket returns a valid visit—server—descriptor, an integer that
is aparameter to al other visit—server functions. For Perl, aVi si t Sr v object is created.

Parameters:

service a service-name that is published by the server.

passwd a string that is associated with the service. Unlike the service—
name it cannot be queried from the seap—server.

host hostname that is published at the seap—server. If set to +"*"+, the
callers hostname is used.

port initial portnumber for the listening socket. If that port isin use,

the number isincreased until afree oneisfound. If port =0, the
system chooses a free port.

fl ags if setto VI SI T_SRV_SEAP_TOGGLE, the server keepsthe service
published only whileit is not connected to aclient.

conn_ti meout when areguest is not finished after conn_t i meout seconds, the
server assumes that the client is hanging and shuts down the con-
nection.

di sconnect cb a function that is called whenever a connection is terminated or
breaks.

di sconnect cb_arg argument for di sconnect _cb.

shut down cb afunction that is called when the server is shut down

shut down cb_arg argument for shut down_cb.

Return Values:
Binding | Success | Failure
C anon—negative server descriptor -1

Perl aVi sit Srv object undef

CHAPTER 4. THEVISIT SERVER API

4.3 vist_srv_init_socket raw

int visit_srv_init_socket_rawchar *passwd, char *host, int port,
int flags, int conn_timeout,
void (*di sconnect _ch)(visit_srv_connection *, void *),
voi d *di sconnect _cb_arg,
void (*shutdown_cb) (visit_srv_connection *, void *),
voi d *shut down_cb_arg);

Description:

Thisfunctionissimilar tovi si t _srv_i ni t _socket (see4.2). The only difference is that seap
is not used. The advantage is that no extra software (the seap—server) is required. However, you
have to find another way to communicate the contact information (hostname and port—number) to
the clients. Although seap is not used, a passwd has to be specified, because the clients use that
passwd to authorize at the server. The parameters host and f | ags are currently not used. We
don’t provide a Perl binding for that function. If you absolutely need one, we leave it as an exercise

for you.
Parameters:
passwd a string that is associated with the service. Unlike the service-
name it cannot be queried from the seap—server.
host not used.
port initial portnumber for the listening socket. If that port is in use,
the number isincreased until afree oneisfound. If port =0, the
system chooses a free port.
fl ags not used.
conn_ti neout when arequest is not finished after conn_t i meout seconds, the
server assumes that the client is hanging and shuts down the con-
nection.
di sconnect cb a function that is called whenever a connection is terminated or
breaks.
di sconnect cb_arg argument for di sconnect _cb.
shut down_cb afunction that is called when the server is shut down
shut down cb_arg argument for shut down_cb.
Return Values:
Binding | Success | Failure
C a non—negative server descriptor -1

Perl aVi si t Srv object undef

4.4. VISIT_.SRV_NIT_FILE

4.4 vist_srv.init_ file

int visit_srv_init_file(char *fil enane);

Description:

This creates a pseudo—server. Instead of connecting to clients, this server reads al requests from
afile that has been been created with a pseudo—client started by vi si t_connect_to.fil e (see
section 3.4. Off course, this server type only supports send—equests (it reads client—data from the

file). In contrast to anormal server, it does not connect to clients. The server isready for dispatching
requests immediately after the init—call.

Parameters:

fil ename name of afilethat contains pre—recorded visit—-messages.
Return Values:

Binding | Success | Failure

C anon-negative server descriptor -1

Perl aVi sit Srv object undef

4.5 visit_srv_connect
int visit_srv_connect(int vsd);

$ok = $vsd->connect ();

Description:
This function establishes a connection to a client. It blocks until the connection is available or
an error occurs. To be accepted by the server, the client must authorize itself with the correct
passwd. The function returns’1’, when the connections is available, 'O’ if any error has occured.
If VI SI T_SRV_SEAP_TOGGLE is set, the service will be unpublished at the seap—server after a
successful connect.
Parameters:

vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*

(aVi si t Srv—objectin Perl).

Return Values:

Binding | Success | Failure

C Pal |1 0

CHAPTER 4. THEVISIT SERVER API

4.6 visit_srv_disconnect
int visit_srv_disconnect(int vsd);

$ok = $vsd- >di sconnect () ;

This function closes a connection to a client. Depending on the parameters of the server
vi sit_srv_.nit_* cdl, additiona actions will be performed. If set, the di sconnect_ch—
function will be called, before anything else is done. If VI SI T_SRV.SEAP. TOGGLE is s&t, the
service will be published again at the seap—server. Upon success, vi si t_srv_di sconnect
returns 1 (it never fails to close a connection).
Parameters:

vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*

(aVi si t Srv—objectin Perl).

Return Values:
Binding | Success | Failure
C.Pel |1 o

4.7 visit_srv_shutdown

int visit_srv_shutdown(int vsd);

Description:
This function shuts down a visit—server. After that, the server descriptor vsd is no longer valid. It
may bereused by alater call tovi si t_srv_i ni t _*. If set, shut down_cb will be called, before
anything else is done. If the server has announced his service at a seap—server, he will unpublish it.
Parameters:

vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*

(aVi si t Srv—object in Perl).

Return Values:

Binding | Success | Failure

CPal |1 0

4.8. VISIT_.SRV_GET_ID

4.8 visit_srv_get.id
int visit_srv_get_id(int vsd, int *id);

$id = $vsd->get _id();

Description:

This function reads a request—id from aclient. It blocks until the id is available or an error occurs.
In case of an error the client is disconnected.
Parameters:
vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*
(aVi si t Srv—objectin Perl).
id apointer to the variable that will hold the request—id upon return.

Return Values:
Binding | Success | Failure
C 1, arequest—id ini d 0

Perl arequest—id undef

CHAPTER 4. THEVISIT SERVER API

4.9 visit_srv_get_request
int visit_srv_get request(int vsd, visit_request *req);

$req = $vsd- >get _request ();

Description:

This function returns a new request. This request contains the envelope information (see section
2.4) that isread from the visit—client. In the C-bindings, the request information is stored in a struc-
ture named vi si t _r equest . This structure contains the fieldsi d, ti nestanp, vtype,
ndim nl, ... n4, ol, ... 04, sl, ... s4. InPeal, aVisit:: Request
object isreturned that contains the samefields.
See section 2.6 for adescription of the Vi si t : : Request object.
vi sit _srv_get _request blocks until arequest isread or an error occurs. In case of an error,
the client is disconnected.
Parameters:

vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*

(aVi si t Srv—object in Perl).

req apointer to arequest structure that will hold the message envelope upon return.

Return Values:

Binding | Success | Failure

C size (in bytes) of the message data. a | -1
request inr eq

Perl aVisit:: Request object undef

4.10 visit_ srv_read data

int visit_srv_read data(int vsd, void *data, visit_request *req);

$data = $req->read([-flat => 1 (0)],
[-pack =>1 (0)]

)
Description:

This function reads the message data according to the envelope information that is contained in the
request stat—structure (or object) r eq. The function blocks until all dataisread or an error occurs.
In case of an error, the client is disconnected. In C, dat a must be a pointer to a buffer that islarge
enough to hold the requested data. In Perl, areference to a new array holding the message data is
returned. The dimension of the array is as specified by $r eq %$or 1, if f | at isset to atruevalue.

Parameters:
vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*
req arequest structure containing the result of the previous call to
vi sit_srv_get request,(aVisit::request—objectin Perl).
flat dat a should be returned in a 1D—array (Perl only).
dat a apointer to a buffer of sufficient size to hold the message data

Return Values:
Binding | Success | Failure
C 1, messageindat a 0

Perl message in $dat a undef

4.11. VISIT_-SRV_WRITE_DATA

411 vist srv_write data

int visit_srv_wite data(int vsd, void *data,
visit_request *req);

$ok = $reg->write(-data => $dat a,
[-flat =>1 (0)],
[-pack => 1 (0)]
);
Description:

This function sends a compl ete message (envelope and data) to the client. The envelope information
istaken from r eq, the datais contained in dat a. The function blocks until all data is sent or an
error occurs. In case of an error, the client isdisconnected. In C, dat a must be apointer to a buffer
containing the data. In Perl, it is a reference to an array. The dimension of the array must be as
specified by $req %$or 1, if f | at isset to atrue value.
Parameters:

vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*

req areguest structure containing the result of the previous call to

vi sit _srv_get request (aVisit::request-objectin Perl).

flat dat aindicatesthat isalD—-array (Perl only).

dat a apointer to data (data array in Perl).
Return Values:

Binding | Success | Failure

C, Perl \ 1 \ 0

CHAPTER 4. THEVISIT SERVER API

4.12 visit_srv_ack2
int visit_srv_ack2(int vsd);

$ok = $vcd->ack2();

Description:
This function sends an acknowledgement to the client which indicates that the server is ready
to receive a new client—request. When the client does not receive this acknowledgement within
neg_ti meout seconds after initiating a request, he assumes that the server is not ready to accept
this request. In that case, he cancels the request but keeps the connection open. Once the acknowl-
edgement is received by the client, afailure to complete the request within conn_t i meout will
lead the client to close the connection to the server.
A robust visit—server should call vi si t _srv_ack?2 only if he is ready to accept the next request
— and not when he has just read the data from the last request.
Upon success, vi si t _srv_ack?2 returns 1. If an error occures, it returns 0 and disconnects the
client.
Parameters:

vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*

(aVi si t Srv—object in Perl).

Return Values:
Binding | Success | Failure
C.Pel |1 o

4.13 visit_srv_configure
int visit_srv_configure(int vsd, int what, ...);
$vsd- >confi gure(-paraneter_nane => $new val ue);

int visit_srv_configure(int vscd, int what, ...);

Description:

This function can be used to modify properties of an active visit—server. Some of the parameters
are specific to a protocol, some are generic. The parameter what isan integer that specifies which
property shall be modified. Symbolic names for these integers are defined inthe vi sit_srv. h
header file. The next parameter isthe new value of that property. Currently, the following properties
can be modified.

4.14. VISIT_-SRV_SOCKET_LSD, VISIT_SRV_SOCKET .CSD,

On socket—connections:

what property/parameter to change type of parameter
VI SI T_SERVI CE service string

VI SI T_.PASSWD passwd string

VI SI T_.HOST host string

VI SI T_.PORT port integer

VI SI T.CONNLTI MEQUT conn_ti meout integer

If a seap—related parameter is changed, while a server has its service published, these changes are
immediately transmitted to the seap—server.

No parameteres can be configured for file—connections.

The Perl binding uses the names of the properties/parameters (as in the new method) to change
instead of the integer what .
Parameters:
vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*
(aVi si t Srv—object in Perl).
what aninteger value, specifing the parameter to change.
the new value of that parameter.

Return Values:
Binding | Success | Failure
C Pel |1 | 0

4.14 visit_srv_socket Isd, visit_srv_socket_csd,

int visit_srv_socket Isd(int vsd);
int visit_srv_socket _csd(int vsd);

Description:
These functions are specific for the socket-based visit—server. They return the socket—descriptors
of the listening socket (_I sd) or the socket that receives the message ids (csd). Events on these
sockets (accept or data available respectively) will trigger actionsin typical visit—servers. To achieve
that, the socket descriptors usually need to be registered at the GUI-toolkit (or explicitely used in a
sel ect —call). See 4.2 for details.
Parameters:

vsd avalid visit—server descriptor, asreturned by vi si t_srv_i ni t_*

(aVi si t Srv—object in Perl).

Return Values:

The functions return a valid socket descriptor or -1 if the socket is not active.

Chapter 5

The AV S/Express visit—server

This APl implements three macros for visit. The module visitserver controls the connection to a
visit client program. The module visitreader and visitwriter are responsible for the data transfer
from/to the visit client program.

Figure5.1: AVS/Express network which uses the visit macros and the Panel of the visitserver macro.

The visitserver panel contains text widgets for the information which will be published at the seap
server, a status line which describes the actual state of the visit connection and a button which
switches the connection active or inactive. Whenever a request arrives the visitserver delegates the
request to the corresponding visitreader/visitwriter. Therefore the trigger output port of visitserver
contains the id of actual request. The multiplexer macro which is also included in the visit package
activates the corresponding output port and a visitreader/visitwriter which is connected to this port.
This macro reads or writes the data from/to the connection.

The four macros visitserver, visitreader, visitwriter and multiplexer are only wrappers for the cor-
responding modules VisitServer, VisitReader, VisitWriter and Multiplexer which are implemented
in the programming language C. The following sections describes this macros and modules. The
section 8 (Demos) contains two examples for the AV S/Express visit—server.

These visit macros and modules are published at the International AVS Centré (IAC) under the
project name Visit. The modules can be found in the Folder Data. |O. The two examples described
in the section 8 (Demos) are located in the folder Examples of the IAC library.

lURL: htt p: / / www. i avsc. or g/

5.1. VISITSERVER

51 visitserver
This functional macro controls the connection to remote applications which uses the VISIT library.

Parameters

Thefollowing lists all of the parameters found in the parameter block VisitServerParams, which are
accessed by the module VisitServer and the Ul Macro VisitUI.

Name Type Description Ul Control

SeapService string Service name under which the visualization | Ultext
will be announced at the SEAP-Server

SeapPasswd string password for checking the service at SEAP- | Ultext
server

Interface string host-name that is published at SEAP-server. | Ultext
If set to "*” the callers hostname is used

Listen int enableg/disables listening socket for connect- | Ultoggle
ing to an applications

IdDescriptions string[] data description string for corresponding id -

Output Ports

Name Type Description

SockiD int socket descriptor of the data-connection to the remote appli-
cations, needed by the VisitReader module

Trigger int value of the ID-parameter of the actual client request; This

port should be connected with theinput port of the multiplexer
module. This module activates one of its own output ports and
aVisitReader or -Writer module connected to it.

Action int describes the status of the connection to a remote application:
0: not listening (Listen==0), 1: listening, but no connected, 2:
connected

Satus string describes the status of the connection

Description

This macro controls the connection to remote applications. If the flag Listen ison, it establishes a
socket with the next free port number above the value of the internal parameter Port and announces
the information about this Port at the SEAP-server under the service-name and password from
SeapService and SeapPasswd.

Then it waits for a connection to the announced port. After connecting to a remote application, the
macro waits for requests on this connection. The output port Sockld is set to the socket descriptor of
this connection. Each request contains an Id which determines which VisitReader or -Writer should
process the request. The output port Trigger will be set to this value. This port should be connect
with the input port of the multiplexer macro. Depending on the value of Trigger, the multiplexer
activates one of itsoutput ports which in turn activates the visitreader or visitwriter macro connected
toit. This module then reads the request data from the socket.

After a client has connected, the service is deleted from the SEAP-Server. Each visitserver can
control only one connection at atime. Therefore, each time a new connection request comes in the
old connection is shut down. If a connection is shut down by the remote application, visitserver
announces its service again.

CHAPTER 5. THE AVSEXPRESSVISIT-SERVER

The visitserver macro should be used in conjunction with the macros multiplexer, visitreader and
visitwriter.

Inputs

SeapService, SeapPasswd, Interface: Service name and password under which the visualization
will be announced at the SEAP-Server. The SEAP-Server runs on adifferent machine and stores en-
tries which describe services of visualization applications. Remote applications can ask the SEAP-
Server for such services and then receive the Portnumber of the socket and the hostname on which
the listening socket is established from the SEAP-Server. This additional process removes the need
to use hard-coded Interface names and port numbers. It is aso possible to change the visualization
workstation while the remote application keeps on running.

Listen: This flag enables/disables the listening socket. Only if the flag is set, alistening socket will
be established. A running connection will be stopped if the flag is set to off.

IdDescriptions: The messages contain a message id, which determines which VisitReader or -
Writer should process the message. In the string array IdDescriptions a description string can be
assigned to the message Id. This string will be used in status messages in the VisitUl or in stdout
messages.

Outputs

Sockl D: SockID is the socket descriptor of the data-connection to the remote application. The
macros visitreader and visitwriter need this Sockld to read the data from the socket.

Trigger: Trigger is the value of the ID-parameter of the message. It is intended to be used to
transport data to different AV S-modules by the help of the multiplexer macro.

Action: This port describes the status of the connection to a remote application: O: not listening
(Listen==0), 1: listening, but no connected, 2: connected. This port can be used to switch the color
of astatus display like atraffic light: 0: red, 1: yellow, 2: green

Status: This output port describes the status of the connection. The String contains the action (not
listening, listening, connected), the id of last message received and the overall number of messages
received while connected.

Utility Modules

The User Macro visitserver combines the functional Macro VisitServer with the Ul Macro Visit-
ServerUl. The User macro contains the parameter block VisitServerParams and an initialized string
array iddescriptions.

Example

An example application VisitGoLEg is provided that works together with the remote application
cgol (game of life) of the VISIT-library distribution (demol/visit. sim). The cgol application com-
putes the game of life for a3d field, which will be sent to AV S/Express every life step. Itis possible
to insert new blocks at selectable positions, and to stop and suspend the remote application.

Files

iac_proj/visit/visit macs.v contains the V definitions of the functiona macro visitserver, the Ul
macro VisitServerUl and the example application VisitEg.

5.2. VIS TREADER

Prerequisites

For using visitserver and to run the demo application the VISIT-library must be installed and also
a SEAP-server must be running. For installation of these tools see this manual or http://www.fz-
judich.de/zam/visit.

Other Notes

TheVisitMacslibrary inheritsits process. Asthislibrary contains no procedura code, the processis
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

5.2 viSitreader

This functional macro reads data from avisit connection.

Parameters
Name Type Description Ul Control
SocklD int Socket descriptor of the data-connection to | -
the remote application.
Trigger int visitreader reads data from the data socket if | -
this port is activated.

Output Ports

Name Type Description

TimeStamp double Timestamp of the data send to the visualization
nl int size of field in dimension 1

n2 int size of field in dimension 2

n3 int size of field in dimension 3

n4 int size of field in dimension 4

Datalnt int[] datafield, if datatype of messageis INT32
DataShort short[] datafield, if datatype of messageis INT16
DataByte byte]] datafield, if datatype of messageisBYTE
DataDouble double]] | datafield, if datatype of message is FLOAT64
DataString string datafield, if datatype of messageis STRING
DatalntScalar int data, if datatype isINT32 and the field lengthis 1
DataShortScalar short data, if datatype isINT16 and the field length is 1
DataByteScalar byte data, if datatype isBYTE and the field length is 1
DataDoubleScalar | double data, if datatype is FLOAT64 and the field length is 1

Description

This macro reads data from aremote application. It needs a SocklID that is provided by avisitserver
macro for a connection. The macro is triggered whenever data arrives at the Trigger port. Trigger
can be connected directly to the Trigger output port of a visitserver. If more than one visitreader
or visitwriter is connected to a visitserver it is hecessary to use a multiplexer in order to select one

CHAPTER 5. THE AVSEXPRESSVISIT-SERVER

visitreader or visitwriter macro for each request. There is no implicit distinction between read and
write requests. Therefore the user is responsible for using different IDs for read and write requests.
The values TimeStamp and nl ... n4 contain the header-information that has been send by the
remote application (using the visit. send.4d or visit send. string function call). Depending on the
type of data that has been send the data is presented on the appropriate Data output port. With a
field of length n1=n2=n3=n4=1 the data is presented both at a vector and a scalar output port.

The visitreader macro should be used in conjunction with the macros multiplexer, visitserver and
visitwriter.

Inputs

Sockl D: Socket descriptor of the data-connection to the remote applications. Thisinput port should
be connected with the output port SockID of visitserver.

Trigger: This port should be connected with an output port of the multiplexer macro which is
connected with the Trigger port of the visitserver macro. This port will be activated if amessage is
arrived for this reader.

Outputs

Timestamp, n1, n2, n3, n4: Contain the header-information that has been send by the remote
application (using the visit_ send 4d or visit send. string function call).

Datal nt, DataShort, DataByte, DataDouble, DataString, Datal ntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:

Depending on the datatype of the message one (or two) of these output ports present the data of the
message (see table of output ports above).

Utility Modules

The User Macro visitreader is only a wrapper macro for the module VisitReader. All input and
output ports of this Module are connected with the macro parameters.

Example

An example application VisitGoLEg is provided that works together with the remote application
cgol (game of life) of the VISIT-library distribution (demo/visit sim). The cgol application com-
putes the game of life for a 3d field, which will be sent to AV S/Express every life step. It is possible
toinsert new blocks at selectable positions, and to stop and suspend the remote application.

Files
iac_proj/visit/visit. macs.v contains the V definitions of the functional macro visitreader.
Prerequisites

For using visitreader and to run the demo application the VISI T-library must be installed and also a
SEAP-server must be running. For installation of these tools see http://www.fz-juelich.de/zam/visit.

Other Notes

TheVisitMacslibrary inheritsits process. Asthislibrary contains no procedural code, the processis
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

5.3. VISITWRITER

5.3 vigtwriter

This functional macro writes data to avisit connection.

Parameters
Name Type Description ul
SocklD int Socket descriptor of the data-connection to the remote | -
application.
Trigger int visitwriter writes data to the data socket if this port is| -
activated.
TimeStamp double Timestamp of the data send to the visualization -
nl int size of field in dimension 1 -
n2 int size of field in dimension 2 -
n3 int size of field in dimension 3 -
n4 int size of field in dimension 4 -
Datalnt int[] datafield, if datatype of messageis INT32 -
DataShort short[] datafield, if datatype of messageisINT16 -
DataByte byte[] datafield, if datatype of messageisBYTE -
DataDouble double]] | datafield, if datatype of message is FLOAT64 -
DataString string datafield, if datatype of messageis STRING -
DatalntScalar int data, if datatype isINT32 and the field length is 1 -
DataShortScalar short data, if datatype isINT16 and the field length is 1 -
DataByteScalar short data, if datatype isBYTE and the field length is 1 -
DataDoubleScalar | double data, if datatype is FLOAT64 and the field length is 1 -

Description

On reguest, this macro sends data back to a remote application. Like the visitreader this macro is
triggered by the Trigger port. The Trigger is activated by a request from the remote application
(visit_recv_4d or visit_recv_string) when SocklD and Trigger are connected to a visitserver (via
multiplexer). The remote application asks for a specific datatype with specific array dimensionality
and bounds. The datatype of the request is used to select the data to be send from the various input
ports. The array dimensionality and bounds are only used to make sure that the macro does not
send more data than the remote application expects. If the values at nl ... n4 are connected or set
to something not equal to -1, those values are used for the transfer. Otherwise the values in the
origina request remain unchanged if n1*n2* n3* n4 matches the size of the array at the input port
or are set to n1=n2=n3=n4=1. nlis set to the size of the array at the input port in the latter case. If
ndim=nl1=1, the data is taken from a scalar input port.

This sounds obscure to you? It isl Just make sure, that the AV'S application always provides the

data that the remote application expects and you don’t have to worry about the parameters nl to n4
at all.

The visitwriter macro should be used in conjunction with the macros multiplexer, visitserver and
visitreader.

Inputs

Sockl D: Socket descriptor of the data-connection to the remote applications. Thisinput port should
be connected with the output port SockID of visitserver.

Trigger: This port should be connected with an output port of the multiplexer macro which is

connected with the Trigger port of the visitserver macro. This port will be activated if arequest is
arrived for this writer.

CHAPTER 5. THE AVSEXPRESSVISIT-SERVER

Timestamp, nl, n2, n3, n4: Contain the header-information that will be send to the remote appli-
cation.

Datal nt, DataShort, DataByte, DataDouble, DataString, Datal ntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:
Depending on the datatype of the message one of these input ports gives the data of the message.

Utility Modules

The low-level VisitWriter module is used in the functional macro visitwriter.

Example

An example application VisitGoLEg is provided that works together with the remote application
cgol (game of life) of the VISIT-library distribution (demol/visit. sim). The cgol application com-
putes the game of life for a 3d field, which will be sent to AV S/Express every life step. It is possible
toinsert new blocks at selectable positions, and to stop and suspend the remote application.

Files

iac_proj/visit/visit. macs.v contains the V definitions of the functional macro visitwriter.

Prerequisites

For using visitwriter and to run the demo application the VISI T-library must be installed and also a
SEAP-server must be running. For installation of these tools see http://www.fz-juelich.de/zam/visit.

Other Notes

TheVisitMacslibrary inheritsits process. Asthislibrary contains no procedural code, the processis
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

5.4. MULTIPLEXER

54 multiplexer

A multiplexer for integer numbers.

Parameters
Name Type Description Ul Control
Inval int number which indicates which output port | -
should be activated.

Output Ports

Name Type Description
Outl ... Out10 int Out<num> will be activated if Inval==num
Description

This simple module is used to trigger one of its output ports whenever it receives something on its
input port. If an integer <num > between 1 and 10 arrives at "Inval’, it is passed to the output Port
Out<num>.

Hint: if your application requires more than 10 IDs you can use multiple ’ Multiplexer’s and specify
the connection to the ' VisitServer’ with 'Trigger-10' (or similar). The *Multiplexer’ then acts on
trigger values 11 to 20.

Inputsand Outputs

Inval: This port gives the number which indicates which output port should be activated.

Outl ... Outl0: Depending on the value of the input parameter 'Inval’ one of these outputs port
will be activated.

Utility Modules

The User Macro multiplexer is only aframework for the module Multiplexer. All input and output
ports of this Module are connected with the macro parameters.

Example and Files

An example for this macro can be found in VisitGoLEg. iac proj/visit/visit macs.v contains the V
definitions of the functional macro multiplexer.

Other Notes

TheVisitMacslibrary inheritsits process. Asthislibrary contains no procedura code, the processis
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

CHAPTER 5. THE AVSEXPRESSVISIT-SERVER

55 VigstServer

This module controls the connection to remote applications which usesthe VISIT library.

modul e VisitServer<src_file="VisitServer.c", process="express"> {
onet hod+notify_inst+req VisitServer _inst (
Por t +r ead+r eq, | nt er f ace+r ead+r eq, SeapSer vi ce+r ead+r eq,
SeapPasswd+r ead+req, Listen+read+req, Action+wite, Status+wite

) = "VisitServer_inst";
onet hod+noti fy_dei nst VisitServer _deinst(
Actiontwite, Status+twite) = "VisitServer_deinst";

onet hod+req SeapUpdat eSer vi ce(
SeapServi ce+read+noti fy+req, Actiontwite, Status+wite
) = "SeapUpdat eServi ce";
onet hod+req SeapUpdat ePasswd(
SeapPasswd+r ead+noti fy+req, Action+wite, Status+wite
) = "SeapUpdat ePasswd";
onet hod+r eq SeapUpdat el nt erface(
I nterface+read+noti fy+req, Actiontwite, Status+wite
) = "SeapUpdat el nterface";
onet hod+req Li st enUpdat e(
Li sten+read+notify+req, Action+wite, Status+wite
) = "ListenUpdate";
onet hod+req | dDescri pti onsUpdat e(
| dDescri pti ons+read+notify) = "l dDescri pti onsUpdate";
i nt Port<NEportLevel s={0,0}> = 0;
string Interface<NEportLevel s={2,0}> = "*";
i nt Listen<NEportLevel s={2,0}> = 0;
string SeapServi ce<NEportLevel s={2,0}> = "VISIT_AVS";
string SeapPasswd<NEportLevel s={2,0}> = "deno";
i nt Sockl D<NEportLevel s={0,2}> = -1;
i nt Trigger<NEportLevel s={0,2}> = 0;
i nt Action<NEportLevel s={0, 2}> = 0;
string Status<NEportLevel s={0,2}> = "<lnit>";
string ldDescriptions<NEportLevel s={2,0}>[];
ptr internal <NEportLevel s={0, 0} >;
b
Description
This module controls the connection to remote applications. If the flag Listen is on, it establishes
a socket with the next free port number above the value of the internal parameter Port and an-
nounces the information about this Port at the SEAP-server under the service-name and password
from SeapService and SeapPasswd. Then it waits for a connection to the announced port. After
connecting to a remote application, the module waits for requests on this connection. The output
port Sockld is set to the socket descriptor of this connection. Each request contains an Id which
determines which VisitReader or -Writer should process the request. The output port Trigger will
be set to this value. This port should be connect with the input port of the multiplexer module.
Depending on the value of Trigger, the multiplexer activates one of its output ports which in turn
activates the VisitReader or -Writer module connected to it. This module then reads the request
data from the socket. After a client has connected, the service is deleted from the SEAP-Server.
Each VisitServer can control only one connection at atime. Therefore, each time a new connec-
tion request comes in the old connection is shut down. If a connection is shut down by the remote
application, VisitServer announces its service again.

The VisitServer module should be used in conjunction with the modules Multiplexer, VisitReader
and VisitWriter.

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

5.5. VISITSERVER

Inputs

SeapService, SeapPasswd, Interface: Service name and password under which the visualization
will be announced at the SEAP-Server. The SEAP-Server runs on adifferent machine and stores en-
tries which describe services of visualization applications. Remote applications can ask the SEAP-
Server for such services and then receive the Portnumber of the socket and the hosthame on which
the listening socket is established from the SEAP-Server. This additional process removes the need
to use hard-coded Interface names and port numbers. It is aso possible to change the visualization
workstation while the remote application keeps on running.

Listen: This flag enables/disables the listening socket. Only if the flag is set, alistening socket will
be established. A running connection will be stopped if the flag is set to off.

IdDescriptions. The messages contain a message id, which determines which VisitReader or -
Writer should process the message. In the string array IdDescriptions a description string can be
assigned to the message Id. This string will be used in status messages in the VisitUl or in stdout

messages.
Outputs

SocklD: SockID is the socket descriptor of the data-connection to the remote application. The
macros visitreader and visitwriter need this Sockld to read the data from the socket.

Trigger: Trigger is the value of the ID-parameter of the message. It is intended to be used to
transport data to different AV S-modules by the help of the multiplexer macro.

Action: This port describes the status of the connection to a remote application: O: not listening
(Listen==0), 1: listening, but no connected, 2: connected. This port can be used to switch the color
of astatus display like atraffic light: 0: red, 1: yellow, 2: green

Status: This output port describes the status of the connection. The String contains the action (not
listening, listening, connected), the id of last message received and the overall number of messages
received while connected.

Utility Modules
The low-level VisitServer module is used in the functional macro visitserver.
Example and Files

An example for this macro can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the VisitServer module.

44 CHAPTER 5. THE AVSEXPRESSVISIT-SERVER

5.6 VisitReader

This functional macro reads data from avisit connection.

nmodul e Vi sit Reader<src_fil e="VisitReader.c", process="express"> {

onet hod+req Vi sitReader _read(
Sockl D+read+r eq, Tri gger +r ead+not i f y+r eq, Dat aDoubl eSi ze+w i t e,
Dat aDoubl e+write, Ti neSt anp+write, nl+wite, n2+wite, n3+wite,
nd+wite, Datal nt Si ze+wite, Datal nt+wite, Dat aShortSi ze+wite,
Dat aShort +wri t e, Dat aByt eSi ze+wri te, Dat aByte+wite,
Dat aStri ng+write, Dat al nt Scal ar +wri t e, Dat aShort Scal ar+write,
Dat aByt eScal ar +wri t e, Dat aDoubl eScal ar+write

) = "VisitReader_read";

i nt Sockl D<NEportLevel s={2,0}> = -1;

int Trigger<NEportLevel s={2,0}> = 0;

doubl e Ti meSt anp<NEport Level s={0, 2}>;

i nt nl<NEportLevel s={0, 2}> = -1,

nt Datal ntSize = 0;
nt Dat al nt <NEport Level s={0, 2}>[Dat al nt Si ze] ;
nt DataShort Si ze = 0;

short Dat aShort <NEport Level s={0, 2} >[Dat aShort Si ze];

i nt DataByteSize = 0;

byt e Dat aByt e<NEport Level s={0, 2} >[Dat aByt eSi ze] ;

i nt Dat aDoubl eSi ze = 0;

doubl e Dat aDoubl e<NEport Level s={0, 2} >[Dat aDoubl eSi ze] ;

string DataString<NeportLevel s={0, 2}>;

i nt Dat al nt Scal ar <NEport Level s={0, 2} >;

short Dat aShort Scal ar <NEport Level s={0, 2} >;

byt e Dat aByt eScal ar <NEport Level s={0, 2} >;

doubl e Dat aDoubl eScal ar <NEport Level s={0, 2} >;

onet hod+noti fy i nst VisitReader _inst(
nl+read+wite, Ti meStanmp+wite, n2+read+wite, n3+read+wite,
nd+read+wite, Datal nt Si ze+twrite, Datal nt+write, Dat aByteSi ze+twrite
, Dat aByt e+wri t e, Dat aShort Si ze+writ e, Dat aShort+write,
Dat aDoubl eSi ze+wri t e, Dat aDoubl e+write, DataStri ng+wite,
Dat al nt Scal ar+wr it e, Dat aShort Scal ar+wri t e, Dat aByt eScal ar+write,
Dat aDoubl eScal ar+write

) = "VisitReader_inst";

i
i nt n2<NEport Level s={0, 2}> = -1,
i nt n3<NEportLevel s={0, 2}> = -1;
i nt n4<NEport Level s={0, 2}> = -1;
i nt ol<NEportLevel s={0,0}> = -1;
i nt 02<NEport Level s={0,0}> = -1,
i nt 0o3<NEport Level s={0,0}> = -1,
i nt o4<NEportLevel s={0,0}> = -1;
i nt sl1<NEportLevel s={0,0}> = -1;
i nt s2<NEportLevel s={0,0}> = -1;
i nt s3<NEport Level s={0,0}> = -1,
i nt s4<NEport Level s={0,0}> = -1,
i

[

[

b

5.7. VISSTWRITER

Description

This module reads data from a remote application. It needs a SockID that is provided by a Vis-
itServer module for a connection. The module is triggered whenever data arrives at the Trigger
port. Trigger can be connected directly to the Trigger output port of aVisitServer. If more than one
VisitReader or VisitWriter is connected to a VisitServer it is necessary to use a Multiplexer in order
to select one VisitReader or VisitWriter module for each request. There is no implicit distinction
between read and write requests. Therefore the user is responsible for using different 1Ds for read
and write requests.

The values TimeStamp and nl ... n4 contain the header-information that has been send by the
remote application (using the visit. send.4d or visit send. string function call). Depending on the
type of data that has been send the data is presented on the appropriate Data output port. With a
field of length n1=n2=n3=n4=1 the data is presented both at a vector and a scalar output port.

The VisitReader macro should be used in conjunction with the modules Multiplexer, VisitServer
and VisitWriter.

Inputs

Sockl D: Socket descriptor of the data-connection to the remote applications. Thisinput port should
be connected with the output port SocklD of visitserver.

Trigger: This port should be connected with an output port of the multiplexer macro which is
connected with the Trigger port of the visitserver macro. This port will be activated if amessage is
arrived for this reader.

Outputs

Timestamp, nl, n2, n3, n4: Contain the header-information that has been send by the remote
application (using the visit send 4d or visit send. string function call).

Datal nt, DataShort, DataByte, DataDouble, DataString, Datal ntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:

Depending on the datatype of the message one (or two) of these output ports present the data of the
message (see table of output ports above).

Utility Modules
The low-level module VisitReader is used in the functional macro visitreader.
Example and Files

An example for this module can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the VisitReader module.

Other Notes

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

5.7 VistWriter

This module writes data to a visit connection.

modul e VisitWiter<src_file="VisitWiter.c", process="express"> {
onet hod+req VisitWiter_read(
Sockl D+r ead+r eq, Tri gger +r ead+not i f y+r eq, Dat aDoubl e+r ead,
Ti meSt anp+r ead, nl1+r ead, n2+r ead, n3+r ead, n4+r ead, Dat al nt +r ead,

CHAPTER 5. THE AVSEXPRESSVISIT-SERVER

Dat aShort +r ead, Dat aByt e+r ead, Dat aSt ri ng+r ead,
Dat al nt Scal ar +r ead, Dat aShort Scal ar +r ead, Dat aByt eScal ar +r ead,
Dat aDoubl eScal ar +r ead

) = "VisitWiter_read";

i nt Sockl D<NEport Level s={2,0}> = -1,

int Trigger<NEportLevel s={2,0}> = O;

doubl e Ti meSt anp<NEportLevel s={2,0}> = 0.;

i nt nl<NEportLevel s={2,0}> = -1;
i nt n2<NEport Level s={2,0}> = -1;
i nt n3<NEportLevel s={2,0}> = -1;
i nt n4<NEport Level s={2,0}> = -1,
int ol<NEportLevel s={0,0}> = -1,
i nt 02<NEportLevel s={0,0}> = -1;
i nt 0o3<NEportLevel s={0,0}> = -1;
i nt o4<NEportLevel s={0,0}> = -1;
int sl<NEportLevel s={0,0}> = -1,
i nt s2<NEport Level s={0,0}> = -1,
i nt s3<NEport Level s={0,0}> = -1,
i nt s4<NEportLevel s={0,0}> = -1;
[

nt Dat al nt <NEportLevel s={2,0}>[];
short Dat aShort <NEport Level s={2, 0}>[];
byt e Dat aByt e<NEport Level s={2, 0}>[];
doubl e Dat aDoubl e<NEport Level s={2, 0}>[];
string DataString<NEportLevel s={2,0}> = "";
i nt Dat al nt Scal ar <NEport Level s={2, 0}> = -1,
short Dat aShort Scal ar <NEport Level s={2,0}> = -1,
byt e DataByteScal ar <NEportLevel s={2,0}> = -1;
doubl e Dat aDoubl eScal ar <NEportLevel s={2,0}> = -1.;

Description

On request, this module sends data back to a remote application. Like the VisitReader this module
is triggered by the Trigger port. The Trigger is activated by a request from the remote application
(visit_recv_4d or visit. recv_string) when SocklD and Trigger are connected to a VisitServer (via
multiplexer). The remote application asks for a specific datatype with specific array dimensionality
and bounds. The datatype of the request is used to select the data to be send from the various input
ports. The array dimensionality and bounds are only used to make sure that the module does not
send more data than the remote application expects. If the values at nl ... n4 are connected or set
to something not equal to -1, those values are used for the transfer. Otherwise the values in the
origina request remain unchanged if n1*n2*n3* n4 matches the size of the array at the input port
or are set to n1=n2=n3=n4=1. nlis set to the size of the array at the input port in the latter case. If
ndim=nl1=1, the data is taken from a scalar input port.

This sounds obscure to you? It isl Just make sure, that the AV'S application always provides the
data that the remote application expects and you don’t have to worry about the parameters nl to n4
atal.

The VisitWriter module should be used in conjunction with the modules Multiplexer, VisitServer
and VisitReader.

Inputs

Sockl D: Socket descriptor of the data-connection to the remote applications. Thisinput port should
be connected with the output port SockID of visitserver.

5.7. VISSTWRITER

Trigger: This port should be connected with an output port of the multiplexer macro which is
connected with the Trigger port of the visitserver macro. This port will be activated if arequest is
arrived for this writer.

Timestamp, nl, n2, n3, n4: Contain the header-information that will be send to the remote appli-
cation.

Datal nt, DataShort, DataByte, DataDouble, DataString, Datal ntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:
Depending on the datatype of the message one of these input ports gives the data of the message.

Utility Modules

The low-level module VisitWriter is used in the functional macro visitwriter.

Example and Files

An example for this module can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the VisitWriter module.

Other Notes

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

CHAPTER 5. THE AVSEXPRESSVISIT-SERVER

5.8 Multiplexer

A multiplexer for integer numbers.

modul e Mul tipl exer<src_file="Miltiplexer.c", process="express"> {
onmet hod+req Ml ti pl ex(| nval +read+notify+req, Qutl+wite,
Qut2+write, Qut3+wite, Qut4+write, Qut5+wite, Qutb+wite
Qut7+write, Qut9+write, Qut 10+write) ="Ml ti pl ex";
i nt I nval <NEportLevel s={2, 0} >;
i nt Qut 1<NEport Level s={0, 2} >;
i nt Qut 2<NEportLevel s={0, 2} >;
i nt Qut 3<NEportLevel s={0, 2} >;
i nt Qut4<NEportLevel s={0, 2} >;
i nt Qut 5<NEport Level s={0, 2} >;
i nt Qut 6<NEport Level s={0, 2} >;
int Qut 7<NEportLevel s={0, 2} >;
i nt Qut 8<NEportLevel s={0, 2} >;
i nt Qut 9<NEport Level s={0, 2} >;
i nt Qut 10<NEport Level s={0, 2} >;
b
Description

This simple module is used to trigger one of its output ports whenever it receives something on its
input port. If an integer <num> between 1 and 10 arrives a ’Inval’, it is passed to the output Port
Out<num>>.

Hint: if your application requires more than 10 IDs you can use multiple ' Multiplexer’s and specify
the connection to the 'VisitServer’ with 'Trigger-10' (or similar). The 'Multiplexer’ then acts on
trigger values 11 to 20.

Inputsand Outputs

Inval: This port gives the number which indicates which output port should be activated.

Outl ... Outl0: Depending on the value of the input parameter 'Inval’ one of these outputs port
will be activated.

Utility Modules
The low-level Multiplexer moduleis used in the functional macro multiplexer.
Example and Files

An example for this module can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the Multiplexer module.

Other Notes

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

Chapter 6

seap — the service announcement
protocol

seap is an acronym for service announcement protocol. The idea is that if a client and a server
want to get into contact, they either need to agree about a contact point in advance or they need
athird party to exchange that information. The 'seap_ser ver’ supplies this service using the
'service announcement protocol’. A visit—server application announces a service by telling the
'seap_server’ a’service name’, a’'passwd and where this service can be reached (hostname
and portnumber). A client-application can query thisinformation if it knows the service name and
the passwd.

Why reinvent the wheel once more ? Well, seap has very limited functionality, has no access control,
almost no security, and no persistence incorporated, but it also is a very thin layer: the server has
only about 220 lines of perl-code, the client only some 140 lines of C-code. Thus, SEAP can easily
be ported and incorporated in any non-real-world-production (of course!) code.

seap consists of:

seap_server a Perl-implementation of the seap—server.

seap a Perl/Tk-based client that can be used to monitor the state of the
seap_server.

seap. c the C-client functions (part of the visit-library).

Seap. pm a Perl module with seap client functions.

sclient ademo-client program.

visitrc a system-wide configuration file that tells clients where the server is
located.

$HOWE/ . vi sitrc anoptiona private configuration file that can overridevi sitrc
The location of the seap—server is taken from a config file named vi si t r ¢ that isinstaled in the
same directory asthe visit-ibrary | i bvi si t. a. The hostname where the seap—server is running
aswell as the port—-number where the server accepts requests are taken from that file. The format is
asfollows:

seap_server . seapserver. nydonai n. de

seap_port © 4711

The values in this file can be overridden by afilenamed . vi si t r ¢ in the user’s home—directory.

49

CHAPTER 6. SEAP — THE SERVICE ANNOUNCEMENT PROTOCOL

6.1 The seap—server

To use seap, you need to have the seap_ser ver running at least during the runtime of both
the visit—client and —server application. The typical mode of operation is to have the seap—server
permanently running on amachine at your site, so that clients can register and query services al the
time. The shell-script check_seap_ser ver should be run periodically from cron to monitor the
seap-server and restart it if needed.

A normal user can query or unpublish only those services for which he knows the passwd. However,
the seap—server has a’master—passwd’ that can be used to query and unpublish any service. But
even with this master—passwd it is not possible to obtain other passwds.

The seap_ser ver reads its parameters from a configuration file. The name of the file can be
given on the command line (default is$HOVE/ . vi si t ser verr c.) Theformat of the config file
isasfollows:

seap_port . 4711

seap_pidfile : /tnp/seap_server.pid
seap_passwd : master_passwd
seap_debug o1

These values have the following meaning:
seap_port the portnumber of the port where clients connect to the server.
seap_pi dfil e thename of afile, where the server stores its process id. The shell script
check_seap_ser ver usesthisfileto check whether the server is run-
ning or has to be restarted.
seap_passwd the master—passwd.

seap_debug this parameter is optional. If set to non-zero, the server prints logging
messages (including passwords !) to stdout. So, please use it only for
debugging.

6.2 The seap client functions

The seap client API provides functions for publishing, unpublishing, and querying services at a
seap-server. We only provide bindings for C and Perl. The Perl API has extra functions for dump-
ing and multiple deletion of services registered at the seap—server. FORTRAN bindings are not
provided since seap will hormally not be used directly by an application but implicitly by viavisit.

6.2.1 Usage

To use the seap client functions, put one of the following lines of code in your program:
#i ncl ude "seap. h" [* C*/

use Seap; # Perl

In a Perl program, you have to create a seap—client object, that does nothing more than remem-
bering the parameters that usually don't change during a session. These are the hosthame and
port—-number of the seap—server ($server host, $server port) and parameters that specify
how often ($maxpol |) aclient polls the seap—server for information and how long he will wait
between two querys ($pol | i nt erval).

$seap = new Seap($pollinterval, $maxpoll);

6.2. THE SEAP CLIENT FUNCTIONS

6.2.2 seap_publish

i nt seap_publish(const char *service, const char *passwd,
const char *host, int port);

$ok = $seap->publish($service, $passwd, $host, $port);

Description:
register a service with the’seap_ser ver’.

Parameters:
servi ce thename of the service to publish.
passwd the (secret) passwd associated with the service.

host the name of the host that providesthe serviceif ' *’ isused, theseap ser ver
replaces this by the name of the host that called 'seap_publ i sh’.
port the portnumber where the serving host listens for clients.
Return Values:

The function returns 1 on success, 0 otherwise.

6.2.3 seap_unpublish

i nt seap_unpublish(const char *service, const char *passwd);

$ok = $seap->unpublish($service, $passwd);

Description:
delete a previously registered service on the’'seap_ser ver’.
Parameters:

Parameters:

servi ce thename of the service to delete.

passwd the (secret) passwd associated with the service.
Return Values:

The function returns 1 on success, 0 otherwise.

6.24 seap_query

i nt seap_query(const char *service, const char *passwd,
char * const host, int * const port,
int pollinterval, int nmaxpoll);

($host, S$port) = $seap->query($service, $passwd);

Description:
queriesthe’seap_ser ver’ for anamed service.

CHAPTER 6. SEAP — THE SERVICE ANNOUNCEMENT PROTOCOL

Parameters:
service the name of the service to query.
passwd the (secret) passwd associated with the service.
host, port name and port-number of the server (output parameters!).

pol I'i nterval query the server every pollinterval secondsif the serviceisnot registered
a the’seap_server’.
maxpol | don’t query more than maxpoll times.
In the Perl binding pol | i nt er val and maxpol | aretaken from the seap—object.
Return Values:

The function returns 1 on success, 0 otherwise.

6.3 seap demo clients

The Tk-client seap is more or less self-explanatory. Per default, it queries the seap.ser ver

every 5 seconds for all registered services and displays them. Using the File-Menu, you can switch
of this auto-update feature (but not change the interval). You may also manually update the infor-
mation (Update-Button), delete an entry (by selecting it and pressing the ' Delete’ -Button), modify
it (by selecting it, pressing the’ Edit’ Button, and changing it in the text input-field - with the Enter-
key or the 'Insert.’-button the changes are accepted). You may also enter new entries in the text
input-field, accepting the with the Enter-key or the * Insert:’ -button.

seap isusudly started with

seap - passwd=<passwd> [- hei ght =<hei ght >]

All of its actions only refer to services that have the passwd given on the command line. The
optional height—parameter can be used to specify the number of linesin the display.

An dternate way of starting seap is

seap - master=<mast er _passwd> [- hei ght =<hei ght >]

With the correct master—passwd of the seap-server, seap displays al published services. In
master—mode it is possible to delete services with any passwd. However it is not possible to ex-
tract passwds or to enter or modify services. This keeps a certain amount of privacy for the users
by not exposing their passwords to the maintainer of the seap_ser ver . For theseap_ser ver,
only the combination of service-name and passwd needs to be unique. Therefore, in master—mode
seap may display several services with the same service-hame.

scl i ent isasimple C—based seap—client. It can publish, query and unpublish services. The usage
is.

sclient -p <service> <passwd> <host> <port> ; publish a service
sclient -qg <service> <passwd> ; query a service
sclient -d <service> <passwd> ; unpublish a service

Chapter 7

Tools

7.1 seap —monitoring the seap—server

seap isasmall Perl/Tk based monitoring tool for seap. In its normal mode, it displays alist of al
services that are registered at the seap—server with a certain password. The GUI lets you unregister
services, edit them or add new ones. The purpose of seap is to give you informations about your
visit—servers and —clients. Typicaly, services will show up when your server is ready, disappear,
when the client connects, and show up again when the client is disconnected. You may also use it
to unregister old services that may remain registered when your visit—server application crashes.

Fili a1 wpadaded 81z Fri How 158830 2000 Ih'l:ll
Bepace Server- sl Porl T tlanmp
cioll 13494072200 301 Fri How 3 15:25:56 2000
cgmZ 1ML TZ.201 W00 Fri How 3 T5:25:50 2000
crold 134,041 7229 S507T Fr 0w 3 065759 2000

Updats | Dok Flllh'rwizl

Figure7.1: seap displaying a couple of servicesrelated to the Game of life demo.

Usage:

seap [- hei ght =<hei ght > [- passwd=[<passwd>]]

The with optional hei ght —parameter, you can choose the initial size of the window.

The optiona verb+-passwd+—parameter can be used to specify the password on the commandline.

Normally, you should not use this parameter, because other users can obtain your commandline
with the ps—command. If you don’t specify a password, the GUI will prompt you for one.

seap aso has a’master—mode’. To operate in this mode, you have to know the master—password
of the seap—server (as specified in . seapser ver r ¢). When started in master—mode, all services
are displayed, no matter which key is associated with them. Services can be unregistered, but you
cannot edit them or add new ones. Thisrestriction isnot imposed by the tool but by the seap—server.
The idea behind that is, that an administrator must be able to remove garbage from the seap—server
but should not alter user data (see section 6).

Usage:
seap - naster[=<master_passwd>] [-hei ght =<hei ght >

Likein norma mode, you can specify the password on the commandline. You can switch between
normal and master mode by selecting ' Password’ in the’File’ menu. A dialog pops up that lets you
change password and mode.

53

54 CHAPTER 7. TOOLS

When "autoupdate’ is active (the default), seap refreshes its list with current data from the seap—
server every 5 seconds.

To unregister or edit a service, select it with the left mouse button. When an update occurs (either
automatically or because you pressed the "update’ button) before you have pressed the 'delete’ or
"edit’ button, your selection is canceled and you have to repeat it.

7.2 vbroker —attaching multiple visualizations

vbr oker isaPerl/Tk based tool that lets you attach multiple visit—servers (aka visuaizations) to
a single visit—client (simulation). It does this by forwarding all send—requests from the client to
al attached servers. Receive-requests however, are only forwarded to a single server. vbr oker
lets you choose at any time, which server will get receive-requests. This means that you may have
multiple passive viewers but only one visualization may steer the application.

vbr oker can aso be used to record data from the simulation to one or more files, or replay
previously recorded data.

The tool maintains alist of all requests of the simulation with informations about which visualiza-
tions received each request. While thisis mainly intended for monitoring the status of the multiple
visualizations, it can also be used to debug your application: If you put vbroker between your
simulation and visualization, you get detailed information about the communication between them.

The main part of the GUI consists of three panels. Only one of then isvisible at atime. With the
"Client connection / Simulation’ panel you control the connection to the simulation, with the’ Server
connections / Visualizations' panel you control the connections to the attached visualizations. The
"Messages panel displays ahistory of the status messages that appear in the bottom line of the GUI.

The current version of VBroker may crash with a segmentation fault when you press the exit button.
We are not sure whether this is caused by visit or by problems within Perl/Tk which are related to
cleaning up fileevent—bindings at exit. Since this only occurs when you exit VBroker, we consider
it aminor problem.

7.2.1 The’Client connection / Simulation’ panel

With this panel you control the connection to the simulation. This client can either be a simulation
or afile.

L _“

i L

Figure 7.2: VBroker client and server panelsin atypical Game of Life session as described in the example
section 7.2.3.

7.2. VBROKER —ATTACHING MULTIPLE VISUALIZATIONS

To connect to asimulation you first have to select ' Seap’ and enter a service/password combination
that the client simulation can connect to. Then press the ’Start’ button. VBroker is now ready to
connect to a simulation and the button text changes to ' Stop’. When a connection is established,
the "Pause’ and 'Disconnect’ buttons become active. With 'Pause/Cont’ you can pause/continue
responding to client requests without disconnecting. 'Disconnect’ disconnects the client. When
you press ' Stop’ VBroker will disconnect the client and no longer announce its service or accept
connections.

To read data from afile, select 'File' and enter the name of afile with pre-recorded data. Here, the
'Start/Stop’ and *Pause/Cont’ buttons are used to start, stop and pause the replay. The 'file event
dilatation’ dlider lets you control the speed of the replay. With avalue of 1, datais replays with the
sametiming asit was recorded, larger values lead to dower, smaller valuesto faster replay. A value
of 0 means replay as fast as possible.

In the lower part of the window all requests are listed as they are processed. The "D’ column
showsthe 'direction’ (send or receive), 'id’ isthe request id, 'timestamp’, 'vtype', and 'dim’ are the
corresponding parameters in the request envelope. Inthe'servers’ column, al servers are listed that
process the request. Each server isidentified by its service- or filename.

The entries in the 'D’ and 'servers’ columns are colored. Green means, that the request has been
precessed successfully, red meansit has failed. Note that send requests even succeed when no server
(visuaization) is connected, because they are handled by VBroker. Receive requests on the other
hand are passed to a’ master—server’ (see next section). They can only succeed when such a master
isactive.

7.2.2 The’ Server connections/ Visualizations' panel

This panel controls the connections to the servers (visualizations). The entry-fields at the top of the
panel let you add servers. By giving their service/passwd combination you add 'real’ servers. You
can also add files, that record the requests from the client simulation. All servers are listed in the
lower part of the panel. For each of them delete, pause/continue and disconnect/reconnect buttons
are created that let you control their operation.

With the radio—button in the column named *Master’ one of the servers can be selected to be the
"master—server’. While all servers receive data from the client simulation, only the master gets the
receive—requests. When no master is selected, receive requests from the client fail. If that happens,
you will usually haveto press the ' Disconnect’ button in the ’ Client connection / Simulation’ panel
to restart the connection.

With each server connection, the service/password or filename is colored on the screen to give you
an impression about what is going on. A connected server is marked in green, a disconnected in
red, a paused in yellow. Behind the name, the number of requests that have been processed by this
server is printed.

7.2.3 Examplesession

This section demonstrates step by step how you can use VBroker to attach several visualizations to
the game of life smulation that is described in section 8.2. We assume that you have installed visit
with Perl-bindings and compiled the cgol . ¢ located in <pr ef i x>/ deno/ gol .

Step 1: connect avisualization to VBroker
Start the Perl/Tk gol visualization:
tkgol . pl -server cgol 1l

You have to select a non—default service name here, because you don’t want to connect directly to
the client.

CHAPTER 7. TOOLS

Start VBroker (the program vbr oker isinstalled in <pr ef i x>\ bi n). Enter the ' Server con-
nections / Visualizations' panel. Enter cgol 1: dcgol as service/password combination and press
the "add’ button at the right end of the line. In the lower part of the window a line is created for
the connection, the name ’cgol 1:dcgol’ should be green to mark an active connection. Press on the
diamond left to the name to make this the ' master—server’.

Step 2: connect to the simulation

Change to the’ Client connection / Simulation’ panel. Enter 'cgol:dcgol’ as the seap service/passwd
combination. If not aready active, click on the diamond at the left of the line to choose a seap—
based connection (in contrast to a file connection). Pressthe ' Start’ button. The server state should
change from =’ to 'no conn’. This means that VBroker iswaiting for a connection.

Start the simulation:

cgol -S 20 20 20 -i -g 10000

are reasonable parameters. It gives you a sufficiently large board, will calculate up to 10000 gen-
erations and insert a runner at a random position. You should immediately see the simulation and
the visualization interact, as if they were connected directly. In the VBroker client panel, you can
watch the requests being processed.

Step 3: connect a second visuaization

Start another gol visualization:

tkgol . pl -server cgol 2

Edit the service/password combination to read ' cgols.dcgol’ and press’add’ again. The new visual-
ization should now show the same data as the first one, but pressing ’ Stop’, ' Runner /2 or ' Flood'
should have no effect on the simulation. By selecting the new visualization as the master, you can
change that at any time.

Step 4: log datato afile

Enter 'cgol.log’ as filename in the ' Server connections / Visualizations' panel and press’add’. In
addition to be displayed by the clients, all datais now logged in thisfile.

Step 5: replay thefile

When you have recorded some data, pressthe’Delete’ button for "cgol.log’ to close the file. Switch
to the ' Client connection / Simulation’ panel and press’Stop’. The cgol program will be discon-
nected from VBroker and cannot reconnect. Enter 'cgol.log’ asfilename, select the’ File'—diamond

and press ' Start’. The contents of the file is now replayed and sent to the two visualizations. Note
that you can alter the speed of the replay with the 'file event dilatation’ dlider.

Chapter 8

Demo Programs

This chapter gives a brief description of the programs located in the demo subdirectories. More
information can be found in the source code. Here, we mainly describe the functionality and usage
of the demos.

8.1 Testclientsand servers

The programs listed in this section are located in the directory denmo/ t est . During the installation
only those demos that can be executed in your environment are installed to

<pr efi x>/ deno/ t est . The programs are just simple visit—lients and —servers that test the ba-
sic functionality of visit and the language bindings. Besides that, they do nothing useful. Especially
the Cversionsvcl i ent. c andvser v. ¢ contain lots of comments in the source code.

8.1.1 vclient.c

A simple visit—client. Connects to a visit—server and sends and receives small amounts of data of
al supported types. Service-name and key are hard—coded to vser v and deno_passwd. The
received datais printed to the screen.

Usage:

vclient [-f <filename>] [-p] [-n <l oops>]

If the- f optionisgiven, al datathat is sent to the visit—server will also be written into the specified
file.

If the - p option is given, vcl i ent polls the seap—server for the service until a connection to the
visit—server is established.

if the - p option is given, the program cycles | oops times through the send/receive calls before it
exits.

8.1.2 vserv.c

A simple visit—server. Service-name and key are hard—coded to vser v and denp_passwd, so
that vser v can co—operate with vcl i ent . vser v accepts client connections in an infinite loop.
All client requests are fulfilled. Data that is sent from the client is displayed (if the datatype is
supported). If a client requests data, dummy values are generated and sent. If an unsupported
datatype isrequested, the client is disconnected from the server. vser v hasno useful commandline
parameters.

57

CHAPTER 8. DEMO PROGRAMS

8.1.3 vclient.pl

A visit—client implemented in Perl. Although its functionality differs slightly fromvcl i ent. c it
also co—operates with vser v. c. It connects to the server and sends and receives various data in
normal and packed form and finally disconnects.
Note, that vcl i ent . pl isnot completely portable. It usespack(" 1", ..) tocreate apacked
array of | NT32 values. This may fail on some platforms (see your perl documentation).
Usage:
vclient.pl [-service <service>] [-passwd <passwd>]

[-h <host>:<port>] [-f <filenane>] [-9]
With - f given, al datathat is sent to the server isalso written to afile. Optionally, service name and
key can be specified (if they differ from the default values). It is also possible to specify hostname
and portnumber of the server directly. In that case, the seap—server is not queried. If - Sis given,
only send requests are issued, no data is received.

8.1.4 vserv.pl, tkserv.pl

Two demo visit—servers that have the same functionality as its C counterpart vser v. c. Only the
output to the screenisdlightly different. Likevserv. c,vserv. pl andt kserv. pl co-operate
withvcl i ent. candvcli ent. pl and have no useful commandline parameters.

t kserv. pl demonstrates how avisit—server can beintegrated in the a GUI based on Perl/Tk. The
only trick isto bind appropriate 'fi leevents' to the sockets of the visit—server.

8.1.5 VistSimpleEg (AVSEXxpress)

This example is a counterpart to the (f)vclient.c demo program. It shows the functionality of the
three visit macros visitserver, visitreader and visitwriter. AV S/Express network receives messages
with different datatypes from the client program (Id=1) and sends messages of different datatypes
(1d=2) to the client program.

The parameter of visitserver (SeapService, SeapPasswd and Interface) are changeable in the vis-
itserver panel. The connection between AV S/Express and (f)vclient can be switched on and off
during the run with the Listen toggle in this panel. For this the client program vclient should be
started with the parameter - p and - n i . The status line in the visitserver panel show the actual
state of the connection. Thetext color notifiesthe general state like atraffic light: green=connected,
yellow=listening, red=not listening.

This example is part of the visit package of the |AC library and can be found in the Example folder
of the IAC library section of the AV S/Express network editor.

8.1.6 fvclient.f
A demo visit—client implemented in Fortran. It has a similar functionality as its C counterpart and
no commandline parameters.

8.1.7 sclient.c, querytime.c

sclient. c isa seap—client that can be used to publish, query, and unpublish services. It is
described in detail in section 6.3.

queryti nme. c isaseap—client that displays the time needed to query a service from your seap—
server. This program has no commandline parameters.

8.2. GAME OF LIFE
8.2 Gameof Life

The example Game of life demonstrates how visit can be integrated in typical simulation program.

The simulation "cgol’ is a C program that plays the well known 'Game of Life’ in 3 spatia di-
mensions. This game simulates the evolution of a population on the basis of a few simple rules.
The board is divided in cells which can either be populated or not. In each new generation, a cell
survivesif it has 5 or 6 neighbors. If an empty cell has 5 neighbors, a new inhabitant is born.
Usage:

cgol <options>

[-S <x> <y> <z>] size of 3D-Field

[-g <nmaxgenerations>] max. nunber of generations cal cul ated
[-i] insert a runner type 1 at position 1,1,1
[-s <service>] contact point of the server (cgol)

[-p <passwd>] contact point of the server (dcgol)

[-V] ver bose (off)

If the commandline option - i isgiven, the program inserts at runner (a constellation of living cells
which walks through the 3d field) the beginning of the smulation. Further insertions of living cells
can only be performed with a visualization/steering tool which is connected to cgol viavisit.

After each generation (but at most once per second) the simulation program tries to connect to a
visualization that has announced a service (default service name 'cgol’, password 'dcgol’, others
can be specified on the command line) at the seap—server. If successful, cgol transfers the actua
state of the 3d field at every generation. Additionally cgol requests a set of steering parameters
from the visualization. Currently these parameters alow to stop or pause/continue the simulation
and to insert runners (either running along on of the coordinate axis (type 1) or on adiagonal (type
2) or arandomly distributed population. If the insertion of arunner is requested, cgol asks for its
position and orientation. If any action was requested, cgol sends an acknowledgment message to
the visualization after the action is performed. This make sit easier for the visualization to reset its
internal state.

We implemented two visualization tools to display and control cgol: t kgol . pl isaPerl/Tk script
and shows a 2d projection of the 3d field; VisitGolEg is a AV S/Express hetwork which displays the
field in 3d. Both examples include a Panel to control the simulation viavisit.

8.2.1 VisitGoLEg (AVSEXxpress)

The VisitGoLEg example is part of the visit package of the IAC library and can be found in the
Example folder of the IAC library section of the AV S/Express network editor. For the steering
components of the visualization the visitserver panel has been extended. The control buttons and
diders are arranged below the control elements of the visit connection. So the user has only one
panel to control the connection and the simulation.

The cgol part of the panel contains following elements:

Pause-button: When this checkbutton is activated the simulation stops its calculations and polls the
visualization for the button state every 2 seconds. When the button is deactivated the simulation
continues with the calculation.

Stop-button: When this checkbutton is activated the simulation terminates and the connection to
Express will be closed.

CHAPTER 8. DEMO PROGRAMS

e Eillers Windssan

bk gy PSR Elu-"-i- T :'ﬂi E.’ =

W acbive fision in soouek |

i
| Sersice | ool

Faansan ogel

s e s
[e ey

]
T -
et gua w

®

T b "
beard gma o
]
Bgrmw jrardn
Farrest

L L M Tog B Ozl
Pk o 8 Wil oD e e e

Figure8.1: Visualization and steering for the Game of Life simulation with AV S/Express.

I nsert-button: The simulation inserts a runner at the position determined with the three sliders on
the right side of the button. The runner will walk in the direction specified with the direction dial
below the insert button. The value 1 corresponds to the x-axis, 2 to the y-axis and 3 to the z-axis.
A negative value indicates that the runner walks in a negative direction. The value 0 is not alowed.
When the ssimulation has inserted the runner, it will deactivate the button.

Random-button: If this checkbutton is activated a random number of cells in inner region of the
field will be set. The dider besides the button describes how many of the inner cells should be set.
When the ssimulation has inserted the cells, it will deactivate the button.

Figure 8.2 shows the top-level network for this example. For the GUI and the communication there
are two macros (GUI) which contain the corresponding macros and modules. With this abstraction
the data flow between the component is identifiable. The output port of the communication macro
contains the actual 3d data field which will be delivered to the visualization macros Axis3D, Bounds
and Glyph. There are severa connections between the GUI and the communication macro which
are responsible for the steering parameters (state of the checkbuttons) and the insert positions.

The next figure 8.3 shows the contents of the communication macro. There are two visitwriter
modules and three visitreader modules. The first reader on the right side reads a string from the
visit connection, which contains status messages of cgol. The second reader gets the acknowledg-
ment values, which will be used for resetting the action button when the corresponding action is
performed. The last reader is responsible for the 3d field, which has the datatype INT32. The three
output ports nl1, n2, n3 of the reader are concatenated to a array of dimensions which are together
with the integer data stream of field contents (Datalnt port of visitreader) ainput port of the module
uniform_scalar_field. The first writer (Ieft side of the network) sends the insert position back to the

8.2. GAMEOF LIFE

% 1 LhyEaer Hi

Figure 8.2: Top-level network for this example.

simulation (if requested), the second is responsible for the steering parameters.

Figure 8.3: Network for the communication between AV S/Express and cgol.

CHAPTER 8. DEMO PROGRAMS

8.2.2 tkgol.pl

t kgol . pl is asimple but non-trivial example of a visit—server embedded in a Perl/Tk script.
It displays the results of the cgol simulation and supports almost all of its steering capabilities.
t kgol . pl has buttons to pause, continue, and stop the simulation as well as buttons to insert
runners of type 1 or 2 or arandom population (the *Flood’ button). The only limitation isthat it is
not possible to enter the position and orientation of the runners or the size of the random population.
For these parameters, random values are sent to the simulation.

Usage:
t kgol . pl <options>

[-service <service>] contact point of the server (cgol)
[- passwd <passwd>] contact point of the server (dcgol)
[-verbose] ver bose (off)

Quit Pause Stop Runner 1 Runner 2 Flood

size: 20x20:20 generation #62 living 39

Figure8.4: Visuaize and steer the Game of Life simulation with Perl/Tk

Chapter 9

| nstallation and Porting

For installation please also read the file | NSTALL. It may be more up to date.

9.1 Prerequisites

We havetested visit on a couple of UNIX-platformsincluding Solaris 2.6, Linux 2.2, AIX 4.3, IRIX
5.6, and Unicos/mk. We expect it to work with only minor modifications on most UNIX platforms
with IEEE arithmetics. To install visit you need at least an ANSI C compiler and a make utility.
Since the seap—server which isanecessary part of visit isimplemented in Perl 5, you need access to
at least one machine with Perl 5. Some of the included tools and examples will also use Perl 5.005
with Perl/Tk 800, others use C++ or AV S/Express. However, these tools are not required for using
visit.

9.2 Quick Installation

For afirst shot, try the following. Unpack the distribution in a directory you have write access to:

gunzip -c visit-1.0.tgz | tar xf -
Change directory to the just unpacked source distribution and run configure:

cd visit-1.0

.lconfigure --prefix=/tnp/visit

With the prefix parameter you may specify the installation directory. We suggest, that you use a
directory which is exclusively for visit, because visit will spread into a couple of subdirectories
during installation and you will have less trouble removing or updating visit if it does not mix with
other software. If you omit - - pr ef i x visit will beinstalledin/ usr/1 ocal /visit.

Build and install visit:

make

make i nstall

Don't try to just type make i nst al |, the perl bindings will not be generated properly!

visit and seap are now installed. Before you can use them, you need to configure and start a seap—
server. Decide, on which machine you want to run the seap—server. On this machine, you need a
working Perl 5 installation. For our tests we have used perl 5.005 02, but we expect the server to
work with any Perl 5.x. For testing, you may use your own userid on your workstation, on the long
term we suggest to use a separate account on a machine with high availability.

63

64 CHAPTER 9. INSTALLATION AND PORTING

On the choosen machine, create a config—file for the seap—server. The syntax of the config—file is
described in more detail in 6.1. The file basically looks like this:

seap_port : 4711 # an arbitrary port > 1000
seap_pidfile : /tnp/seap_srv.pid # renenbers the PID

seap_passwd : ny_passwd # the naster password
seap_debug 0 # 1 for extensive stdout-I|ogging
Start the seap—server:

seap_server -f <config-file>

where<confi g-fi | e>isthefull path of your config—file. The default location of the config-file
is$HOME/ . seapserverrc . If you placeit there, you may omit the - f -parameter.

Inyour visit-installation, edit thefile<pr ef i x>/ et ¢/ vi si trc ,wherepr ef i x isthe param-
eter you gaveto confi gure.

seap_server : seapsrv.nydomain.com # your seap_server
seap_port : 4711 # port of seap_server

These are the system—defaults. If afile. vi si t r ¢ existsin ausers home—directory, values therein
overridethosein<prefi x>/ etc/visitrc.

At this time the installation of visit is completed. You should now compile and run the demo
programs in order to verify that your installation was successful.

9.3 Test theinstallation

Before you can test visit, you have to complete the installation (see previous section), because the
demos expect the include—files and libraries to be in the proper locations in <pr ef i x>.

Change directory to deno/ t est . All of the test programs and Makefiles are located there. Start
with testing your seap installation. Build the seap demo—client scl i ent :

make sclient
Register a service at the seap—server:
.Isclient -p test_service test _key test host 99

wheret est _servi ce, test_key, test_host canbeany strings and 99 any number. If
the program finishes quietly, everything is ok. If you get something like

_seap_get _server: failed to read 'seap_server’ fromrc-file
your vi si t r ¢ file hasawrong syntax or could not be found. If you get something like
seap_publish connect to 'seapsrv: 4711 : Connection refused
either your seap—server isnot running or the entriesin your vi si t r ¢ file are wrong.
Query the just registerd service:

./sclient -q test_service test_key

The answer should be:

9.4. CONFIGURE OPTIONS

host = "test_host’, port = 99

Unregister the service:

./sclient -d test_service test_key

The program should finish quietly. If you query the service again, the answer should be
query failed

See section 6.3 for a detailed description of scl i ent . If everything looks fine until here, your
seap-installation seems to work properly and you may start to test visit with atrivial pair of client
and server:

make vserv vclient

First start vser v and then vclient in a different window (or f vcl i ent, if you have a Fortran
compiler) and watch them exchange data. Both programs will print information messages on the
screen. The client should exit after a few messages. The server will complain about a broken pipe
and then wait for a new connection. You may start the client again to repeat that. If the server is
running on a machine that does not support all the data types sent by the client, it will complain and
disconnect the client.

For this example to work, the seap_ser ver must be running. If you have instaled the perl
bindings (default, if you have perl5) you can substitute either vser v or vcl i ent or both with
vserv. pl orvclient. pl . To use the perl scripts, you have to set the environment variable
PERL5LI B so that perl can find the visit modules. You may source the script vi sit _perl 5li b
to do so:

<prefix>/bin/visit_perl5lib

where <pr ef i x> isthe the value specified to configure. If anything goes wrong, take alook at the
next section. Configure has a couple of optional parameters that may help. For more tests, look at
the other demo programs, which are described in chapter 8.

9.4 Configure options

Configure tries to guess what your system looks like, which compilers and tools are present and
from that information creates Makefiles and other files needed for proper compilation and installa-
tion of visit. Configure is completely non-interactive, but has a couple of command-line options,
that influence its behaviour. Also certain variables will also be used if set.

visit contains certain optional parts and features. By default, configure will build everything that
it believes is possible on your system. E.g. it will build Fortran—bindings, when it finds a Fortran
compiler. What follows isalist of parameters and variables (with the default value in braces) and a
short description of the way they work.

--prefix=<prefix> [/usr/local/visit]
the top—leve installation directory for visit.

--w t h-perl =<yes| no| visit]|perl>

--W t h-perl (same as yes)

--w t hout - perl (sane as no)

Configures the perl-bindings of visit. If not given, the perl-bindings are build, if and only if your
PATH contains a perl (version 5.x) interpreter. If you select no, no perl-bindungs are build.

CHAPTER 9. INSTALLATION AND PORTING

By default, or when you select either yes or vi si t the perl modules will beinstaled in
<prefix>/lib/perl5/....Inthat caseusersmust set the environment variable PERL5LI B
in order to use them. For that purpose ascript named vi sit _per | 51 i bisautomagicaly created
and installed in <pr ef i x>/ bi n. Users have to source that script. Too avoid this, you may select
--w t h- per| =per| . Inthat case, the modules will be installed in the same directories perl uses.
Configure will stop with an error message, if you request the perl-bindings to be build and perl is
not available.

--w t h- seapper| =<yes| no| visit]|perl>

--W t h-seapper|l (same as yes)

--w t hout - seapper | (same as no)

Configures seap. If not given, the seap—server and the perl—bindings for seap will be build, if and
only if a perl (version 5.x) interpreter is found. This is separated from the perl-bindings of visit,
because you need a seap—server on at least one machine, but can do without visit’s perl-bindings.

Theinstallation directories are selected aswith - - wi t h- per | . If you don’t specify it explicitely
(withper | orvi sit)itwill usethesameasgivenfor - -wi t h- per |, (and vice versa).

--W th-copt=<options>|[-Q
options, that are passed to the C compiler. As the name suggests, it is intended for optimization
options, but can of course be used for other type of options, too.

--wi th-fopt=<options>|[-Q
options, that are passed to the Fortran compiler. Asthe name suggests, it isintended for optimization
options, but can of course be used for other type of options, too.

--Ww t h-debug
If given, all sources will be compiled with - DDEBUG, which will lead to exhaustive debugging
output. Additionally, the compiler options are changed to - g.

--With-sw g

Thisoption isfor porters/developers only. Swig isatool that supports the creation modules for perl
and other scripting languages like tcl and python. You only need it, if you want to change the core
of the perl-bindings (thefilevi sit _perl/ Vi sitRaw. i).

--wi t h-bl ocki ng

The ability of visit to time out TCP/IP communication partners that don't respond or respond to
slowly relys on non-blocking sockets. Therefore sockets are opened non—blocking per default. On
the Cray T3E, we experienced infrequent crashes of hon—blocking visit-sockets in Fortran. If you
want to use the Fortran bindings on the T3E or experience similar problems on other platforms, you
may specify the option - - wi t h- bl ocki ng. It compiles the visit client functions to use blocking
sockets. This means that your simulation will never time out a visualization that hangs. However,
if the simulation terminates or crashes, your simulation will shut down the connection properly.

--help

The configure-script itself is created by the gnu-tool autoconf from afile named
configure.in. Besides the options listed above there are a couple of other generic options,
which you might find more or less useful. With this option you get a comprehensive list of them.

CC, F77, PERL5, SWG CPP, | NSTALL

Explicitly set the compilers and tools you want to use. Thisis particularly useful if you have severa
C or Fortran compilersinstalled and don’t like the one that configure selects by default, e.q:

9.5. PORTING HINTS

CC=xlc F77=xIf ./configure

There are lots of other variables (like CFLAGS, FFLAGS, LI BS) that might be useful. Check
the autoconf documentation or look into the configure script.

9.5 Porting hints

The configure script that is part of the visit—distribution tries to detect a couple of things that may
differ bewteen platforms and modify Makefiles and part of the sources to overcome these differ-
ences. The current script only looks at things that are relevant for machines that we have access
to. If you have other platforms, it may be neccessary to add new tests. The configure script is
automatically generated by the GNU autoconf utility, so please edit conf i gur e. i nif required.
The next two sections treat the problems of Fortran support and data representations which will
most probably be an issue. On more exotic UNIX variants, you may also experience problems with
socket options and header—files.

If you experience any ploblemswewould like to hear from you, not matter whether you have solved
it yourself or not.

9.5.1 Fortran issues

Unfortunately, there is no standard for mixed language programming between C and Fortran 77.
Most of the problems arise with the naming conventions of symbols and the passing of string pa-
rameters to a Fortran subroutine. While C functions generate a symbol of the same name a Fortran
function MYDEAR may appear as nydear, MYDEAR _nydear, MYDEAR , ... or what-
ever you can think of. This may even vary between Fortran compilers on the same machine. The
configure script tests for a couple of common cases and modifies the file vi si t f. ¢ which con-
tains the Fortran bindings accordingly. Be aware, that this means that if you have configured visit
with a certain Fortran compiler, the bindings may not work with an other compiler on the same ma-
chine! If your compiler generates symbols that are not recognized by configure you may be forced
to extend the test and edit vi si t f . c.

Another typical problem is the handling of function parameters of type CHARACTER. Many com-
pilersimplicitly add the declared length of the variable to the parameter list. On SGI/CRAY systems
a CHARACTER variable is represented by a structure named _f cd. Configure only supports these
two cases.

9.5.2 Datatypeson new platforms

On paltforms with |EEE arithmetices, the representation of numerical data types only differs by
size and byte order. The latter case is handled by visit at runtime. For the sizes, visit provides only
support for integer types. visit uses 16 and 32 bit integers and configure typedefs the appropriate
C typesto vi nt 16 and vi nt 32. The macro HAS_ VI NT16 is defined if and only if a 16 bit
integer type exists. The current version of visit generally assumes that a doubl e (and a Fortran
DOUBLE PRECI SI ON) have 64 bits. Thisis hard—coded at several places and will be changed in
alater release.

9.5.3 Defining new data types

visit supports only alimited number of datatypes (see 2.5) and has no mechanism for defining new
types on the application level. However, it is quite simple to define new types by modifying the
library itself. In total, there are five files to modify (or three, if don’t need the perl—bindings):

CHAPTER 9. INSTALLATION AND PORTING

1. defineitinvisit. h

2. modify the vi si t _si zeof function in vi si t. c to return the correct size of the new
datatype.

3. modify the_vi sit_srv_convert funtioninvi sit_srv.c.
4. modify thefunctions _name2vt ypeand _vtype2naneinVisit.pm
5. defineitin Vi si t Raw. i and modify the functions _vi si t _AvV2dat a and
_Vvisit_data2AVinthe samefile.
E.g. assume, you want to add a 32-hit float value. Then you would do the following:

1. add aline

#define VISIT _FLOAT32 6 /* any unused positive value */
tovisit.h
2. edit thefunctionvi sit _si zeof invi sit. c by adding an extra case to the switch state-
ment. This should set size to the number of bytes of the new datatype.
case VI SIT_FLOAT32:
size = 4;
br eak;
3. edit the function _visit_srv_convert funtioninvi sit_srv. c by adding acase to

the switch statement. This should define the conversion that is required between machines of
different endianess for the new datatype.

case VI SIT_FLOAT32:
ctoh32arr(data, size / visit_sizeof (VISIT_FLOAT32),
afl ag) ;
br eak;

4. edit thefileVi si t. pm Inthe function_nane2vt ype add aline:

$vtype = $VisitRaw : VISIT_FLOAT32 i f($nane eq ' FLOAT32');
In the function _vt ype2nane add aline:

$nane = ' FLOAT32' if($vtype == $VisitRaw : VISIT_FLOAT32);
These functions provide conversions between the integer representation of the data type in
the C implementation and the string representation used by the perl—bindings.

5. repeat the define—directive fromvi si t. hinVi si t Raw. i

#define VISIT FLOAT32 6 /* sane value as in visit.h */

and modify the functions _vi sit_AV2data and _vi sit_dat a2AV. These functions
convert Perl arrays of the datatype to C arrays and back. In _vi si t _Av2dat a you would
add anew case to the switch on vt ype:

case VI SI T_FLOAT32:

{
float *fp = Cdata;
for(i=0; i<n; i++) {

tv = av_fetch(Avdata, i, 0);
fp[i] = SVYNV(*tv);
}
}
br eak;

In_visit_data2AVit would be:

9.5. PORTING HINTS

case VI SI T_FLOAT32:

{
float *fp = Cdat a;

for(i=0; i<n; i++) {
svs[i] = sv_newnortal ();
sv_setnv(svs[i], fp[i]);
}
}
br eak;
Note that this assumesthat si zeof (f 1 oat) is4onal of your platforms — like the current
implementation assumesthat si zeof (doubl e) isaways 8.

