
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

VISIT - a Visualization Interface Toolkit

Version 1.0

Thomas Eickermann, Wolfgang Frings

FZJ-ZAM-IB-2000-16

Dezember 2000

(letzte Änderung: 12.12.2000)

Contents

1 Introduction 3
1.1 Credits and Copyrights 4

2 General Concepts of Visit 5
2.1 Conventions . 5
2.2 Client – Server Connections. 6
2.3 Visit Requests 6
2.4 Message envelope .. 6
2.5 Message data 7
2.6 Visit and Perl5 8

3 The Visit Client API 9
3.1 Usage .. 9
3.2 visit connect. 10
3.3 visit connectto host . 11
3.4 visit connectto file . 12
3.5 visit disconnect . .. 13
3.6 visit configure 14
3.7 visit send4d . 15
3.8 visit send4d os . 17
3.9 visit sendstring . 18
3.10 visit recv 4d . 19
3.11 visit recv 4d os . 21
3.12 visit recv string . 22

4 The Visit server API 23
4.1 Usage .. 24
4.2 visit srv init socket . 24
4.3 visit srv init socketraw . 26
4.4 visit srv init file . 27
4.5 visit srv connect .. 27
4.6 visit srv disconnect. 28
4.7 visit srv shutdown . 28
4.8 visit srv get id . 29
4.9 visit srv get request. 30
4.10 visit srv readdata . 30
4.11 visit srv write data . 31
4.12 visit srv ack2 . 32
4.13 visit srv configure . 32
4.14 visit srv socketlsd, visit srv socketcsd,. 33

i

ii CONTENTS

5 The AVS/Expressvisit–server 34
5.1 visitserver . 35
5.2 visitreader. 37
5.3 visitwriter . 39
5.4 multiplexer . 41
5.5 VisitServer . 42
5.6 VisitReader . 44
5.7 VisitWriter . 45
5.8 Multiplexer . 48

6 seap — the service announcementprotocol 49
6.1 Theseap–server . .. 50
6.2 Theseap client functions . .. 50

6.2.1 Usage 50
6.2.2 seappublish . 51
6.2.3 seapunpublish 51
6.2.4 seapquery . 51

6.3 seap demo clients .. 52

7 Tools 53
7.1 seap – monitoring theseap–server 53
7.2 vbroker – attaching multiple visualizations. 54

7.2.1 The ’Client connection / Simulation’ panel. 54
7.2.2 The ’Server connections / Visualizations’ panel 55
7.2.3 Example session . .. 55

8 Demo Programs 57
8.1 Test clients and servers 57

8.1.1 vclient.c . .. 57
8.1.2 vserv.c . .. 57
8.1.3 vclient.pl . 58
8.1.4 vserv.pl, tkserv.pl . .. 58
8.1.5 VisitSimpleEg (AVS/Express) .. 58
8.1.6 fvclient.f . 58
8.1.7 sclient.c, querytime.c. 58

8.2 Game of Life 59
8.2.1 VisitGoLEg (AVS/Express) . .. 59
8.2.2 tkgol.pl . 62

9 Installation and Porting 63
9.1 Prerequisites. 63
9.2 Quick Installation .. 63
9.3 Test the installation. 64
9.4 Configure options .. 65
9.5 Porting hints. 67

9.5.1 Fortran issues. 67
9.5.2 Data types on new platforms . .. 67
9.5.3 Defining new data types. 67

List of Figures

4.1 schematic diagram of a simplevisit–server. 24

5.1 AVS/Express network which uses the visit macros and the Panel of the visitserver
macro. 34

7.1 seap displaying a couple of services related to the Game of life demo.. 53
7.2 VBroker client and server panels in a typical Game of Life session as described in

the example section 7.2.3. . .. 54

8.1 Visualization and steering for the Game of Life simulation with AVS/Express. . . . 60
8.2 Top-level network for this example. . .. 61
8.3 Network for the communication between AVS/Express and cgol. 61
8.4 Visualize and steer the Game of Life simulation with Perl/Tk. 62

iii

iv LIST OF FIGURES

Visit - Visualization Interface Toolkit
Seap - Service Announcement Protocol

Copyright (C) 2000, Forschungszentrum Juelich GmbH, Federal Republic of Germany. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

• Any publications that result from the use of this software shall reasonably refer to the Re-
search Centre’s development.

• All advertising materials mentioning features or use of this software must display the follow-
ing acknowledgment:

This product includes software developed by Forschungszentrum Juelich GmbH, Federal Re-
public of Germany.

• Forschungszentrum Juelich GmbH is not obligated to provide the user with any support, con-
sulting, training or assistance of any kind with regard to the use, operation and performance
of this software or to provide the user with any updates, revisions or new versions.

THIS SOFTWARE IS PROVIDED BY FORSCHUNGSZENTRUM JUELICH GMBH ”AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL FORSCHUNGSZENTRUM
JUELICH GMBH BE LIABLE FOR ANY SPECIAL, DIRECT OR CONSEQUENTIAL DAM-
AGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR
PERFORMANCE OF THIS SOFTWARE.

Chapter 1

Introduction

With the increasing capabilities of both supercomputers and graphical workstations new modes
of operation become feasible for numerical simulations that are traditionally performed in batch
processing. Connecting a workstation to a compute–server allows for interactive monitoring and
control of such simulations. Buzz-words in that field areonline-visualization, interactive simula-
tions, or computational steering. Of course, there is a need for programming tools that support
the development of interactive applications. A couple of such tools is freely available from various
institutions (CUMULVS, CSE, SCIRun, OViD). But when — during the ”Gigabit Testbed West”
project, a testbed for the new German Gigabit Science Network, the G-WiN — the need for such a
tool arose, we found them being either to simplistic or to complex and decided to develop our own
tools, namedvisit (visualizationinterfacetoolkit). What we needed is basically a set of functions
that allow for establishing a connection between simulation and visualization, exchanging data and
eventually shutting down the connection again. Basic design considerations were:

• The simulation is considered ’more important’ than the visualization (CPU–time on super-
computers is expensive) and therefore should be disturbed as little as possible by failures or
slow operation of the visualization. This means that all operations (like sending data to be
visualized or receiving new parameters) have to be initiated by the simulation and are guar-
anteed to complete (or fail) after a user–specified timeout. The visualization acts as a server
that dispatches the simulations requests.

• It should be possible to transfer at least simple datatypes like strings, integers and floats and
arrays of integers and floats. The implementation should not inhibit later extensions.

• Data conversions should be performed transparently for the user. However, since most mod-
ern architectures use IEEE format, this is restricted to byte-order conversions (to avoid ex-
pensive conversions into external data representations like XDR).

• The simulation should be able to connect to the visualization using ”service–names” rather
than host–name and port–number. This on the one hand allows to avoid port–number conflicts
and on the other hand enables the user to start the visualization on any workstation (or even on
different workstations, one at a time). However, this requires some kind of naming–service.

• The data–transport should use IP, the only protocol that is available on all platforms, but the
API should allow for other mechanisms that we may implement in the future (e.g. MPI, using
the MPI-2 process attachment or low–level network protocols like Myrinet).

• It should be possible for a simulation/visualization to connect to more than one partner at a
time.

• For the simulation, language bindings for at least C and FORTRAN are a must.

• In the Gigabit Testbed applications, mainly AVS/Express was used for visualization. The
completevisit–functionality should be available through AVS/Express modules so that there
is no need for the Express programmer to write extra C–code to access them.

3

4 CHAPTER 1. INTRODUCTION

• Both the API and the implementation should be lean, to simplify usage and porting to new
platforms.

• Security was considered a minor issue forvisit. Authorization of simulation and visualiza-
tion is based on a user–specified password. All data (including the password) is transmitted
without any encryption. This will be changed in a later version.

Bundled withvisit is a simple name–service namedseap (service announcementprotocol). A vi-
sualization can register its service(s) at aseap–server. The simulation can query this information
(consisting of a host–name and a port–number) and use it to connect to the visualization. Currently,
theseap–server is implemented in perl and has no access–restrictions. Anyone can register services.
Anyone who knows the passwd associated with a service can query and unregister this service.

The current implementation ofvisit uses TCP/IP sockets for the connection between simulation
and visualization. Besides that, it is also possible for the simulation to write the data to a file and
for the visualization to read the data from such files, using the same send/receive calls as for a
socket–connection. This is intended to be used for offline–visualization, where the simulation data
is recorded in advance. For the simulation, the API consists only of a few function calls, making it
very easy to usevisit in a simulation. Language bindings are available for C, FORTRAN, and Perl.
For the visualization–side,visit has language bindings for C and Perl. The distribution contains
demo clients and servers in all supported languages. A complete server for AVS/Express is also
included.

The rest of this document is organized as follows. The next sections describe thevisit API for the
simulation (client) and visualization (server) side for all language bindings. One section is dedicated
to seap. After that, the demo programs included with the source distribution are discussed. The last
part contains installation instructions and hints for porting.

1.1 Credits and Copyrights

visit usesminilzo, which is part of the LZO–library by Markus Franz Xaver Johannes Oberhumer.
LZO is free software that is distributed under the terms of the GNU General Public License (either
version 2 or any later version).

visit itself is copyrighted software of the Research Centre J¨ulich GmbH. It can be downloaded from
the Research Centres web–server:
http://www.fz-juelich.de/zam/Angebote/Angebote-e.html
It can be used and redistributed under the conditions stated in the DISCLAIMER file that is con-
tained in the distribution. The AVS/Express modules are also available at the IAC.

Chapter 2

General Concepts of Visit

visit is a library for point–to–point communication between two independent applications (like a
simulation and a visualization) using a client–server model. Building avisit–client is as simple as
file I/O using open, read, write, and close. To implement avisit–server is slightly more complex, but
supported by a ’server–toolkit’ that is part of the library. Thevisit API abstracts from the underlying
network protocol, so the same functions can be used for different types of communication.

2.1 Conventions

Due to the client–server architecture ofvisit we will use the termsvisit–client andvisit-server (or
just client and server) for the simulation and visualization parts of a coupled application usingvisit.
This also reflects the fact that the usage ofvisit is not limited to steering and interactive simulations.

In the description of the API we use the following typesetting rules. For each function, the C
function declaration, the FORTRAN subroutine header and the Perl–Call are given. Parameters with
equal names have identical meanings in all language bindings. Following this declaration, there is
a short description for each parameter.visit is implemented in C. Our goals to build the FORTRAN
bindings as a thin layer on top of the C implementation, to be compatible with FORTRAN 90, and
to keep it portable, lead to some compromises.

C functions which return a status will return 1 in case of success and 0 otherwise. Functions that
return a non-negative integer (like a connection descriptor), will return -1 in case of an error.
Functions that return a pointer will return NULL in case of an error.

Constants are defined as macros in the header–filevisit.h

FORTRAN bindings use subroutines not functions. For all functions that are non–void in C, the
subroutine returns a status (0 or 1) in the last parameter IERROR. If the C–function returns
more than just a status, the subroutine returns that value in its first parameter.

Constants are defined as parameters in the header–filefvisit.h

Perl bindings are more Perl–stylish object–oriented. Parameters are generally named like e.g. in
the Perl-Tk modules. This allows for default arguments and some function overloading. In
the description, optional arguments are placed in brackets ([]). The default values are put in
parenthesis. If a C–function returns a status, the corresponding Perl–function will also return
0 or 1. For C-functions that return more than a status (and -1 or NULL in case of an error) the
Perl–function will return ’undef’ in case of an error. For both C and FORTRAN, connections
and other ’objects’ are accessed via integer descriptors. In Perl, object references are used
instead.

The message data can either be stored in standard Perl arrays which is not very efficient
for large amounts of data (mainly in terms of memory usage) or in a packed binary form.

5

6 CHAPTER 2. GENERAL CONCEPTS OF VISIT

However, handling arrays with a few thousands of elements is no problem.

Instead of the integer constants in C and FORTRAN, strings are used (e.g.’INT32’ instead
of VISIT_INT32 (=2)).

2.2 Client – Server Connections

The communication betweenvisit–server and –client is connection–oriented. This means that client
and server must explicitly establish a connection before they can exchange data.

In detail, thevisit–server will perform all the initializations that are required to be able to accept
clients. After that he will register his service at theseap–server (the information a client needs
to find the server is associated with a service–name and a key). Avisit–client queries theseap–
server for this data (by specifying service–name and key) and connects to thevisit–server. During
the startup, client and server negotiate certain parameters of the connection (like byte order and
authorization).

E.g. in the TCP/IP case, thevisit–server will open a listening socket and then register its hostname
and portnumber at theseap–server. Thevisit–client queries these parameters from theseap–server
by specifying the service–name and key. The client the connects to thevisit–server and authorizes
himself by sending the key.

Once established, a connection stays open, until it is either explicitly shut down by one of the part-
ners, a partner dies or exits. Currently,visit does not contain sophisticated error–recovery mech-
anisms. When one of the partners detects an error during communication (timeouts or invalid
response from the other partner) he shuts the connection down.

2.3 Visit Requests

After the connection is established, client and server can exchange messages. Such a message
consists of an envelope and the actual data. The envelope contains meta–information like message
size and type (see below for details). It is always the client who initiates a message transfer by
sending a request to the server, no matter in which direction the message will flow. The first action
of the client is to check whether the server is ready to accept a request. (It is a property of the
connection, how long the client will wait for the server to respond until he assumes that the server
is not ready.) If the server is ready, the client proceeds, otherwise the request is canceled.

In case of a send request, the client then sends a message id, the message envelope, and the data.
In case of a receive request, he sends just the id and an envelope. The server responds by sending
back a message consisting of envelope and data. It is not guaranteed that this message matches the
requested one. However, to avoid buffer overflows, the client rejects messages that are larger than
requested.

2.4 Message envelope

Currently, a message envelope contains the following data. Due to the limitation to at most 4D–
arrays, the size of the envelope is constant. Depending on the actual dimension, not all entries may
be significant.

2.5. MESSAGE DATA 7

timestamp a float value (no specific meaning).
vtype an integer value that specifies the type of the message data. This value is used

to calculate the size of the message and to perform necessary format conver-
sions between client and server (see below for a list of supported datatypes).

ndim the dimensionality of the message data. The dimension may be 1, 2, 3, or 4
(1 for a scalar).

n1 array extension in the first dimension (1 for a scalar)
n2 array extension in the second dimension (not used, ifndim<2)
n3 array extension in the third dimension (not used, ifndim<3)
n4 array extension in the forth dimension (not used, ifndim<4)
o1 offset in first dimension (no specific meaning)
o2 offset in second dimension (no specific meaning)
o3 offset in third dimension (no specific meaning)
o4 offset in forth dimension (no specific meaning)
s1 stride in first dimension (no specific meaning)
s2 stride in second dimension (no specific meaning)
s3 stride in third dimension (no specific meaning)
s4 stride in forth dimension (no specific meaning)

For correct message delivery, the parametersvtype, ndim, n1, ... n4 are significant. The
other parameters are for convenience only. Thetimestamp is intended to identify a data–set in
a series of similar data, as it often occurs in simulations.offset andstride are intended to
indicate that the transmitted data is only part of a larger field (starting at an offset, and being sub–
sampled with a stride). However, these parameters can be used for other purposes or be ignored
completely.

2.5 Message data

Currently,visit is able to transfer strings and arrays of integer (1, 2, or 4 bytes) and floating point
(8 byte) numbers. An array may be no more than 4–dimensional. Scalar values are treated as a
1–dimensional arrays of length 1. The reason for the limitation in the dimension is to make the API
simpler — and not laziness as you may suspect (this affects mainly the AVS/Express modules). We
choosed 4 as a limit because in visualization one usually deals with at most 3D–data. The forth
dimension can e.g. be used to transfer 3D–vector–fields or time–series of 3D–data.

Currently the following datatypes are supported byvisit:

datatype C, FORTRAN name Perl name
64-bit floats (typically double) VISIT_FLOAT64 ’FLOAT64’
32-bit integers (typically int or long) VISIT_INT32 ’INT32’
16-bit integers (typically short) VISIT_INT16 ’INT16’
8-bit integers (typically unsigned char)VISIT_BYTE ’BYTE’
0-terminated C-strings VISIT_STRING ’STRING’

The values in the second and third column are the values/names under which the types have to
be specified in thevtype–parameter of the envelope. Not all datatypes may be available on all
platforms (e.g. T3E is lacking INT16).

visit provides automatic byte order conversions between client and server if necessary. Currently,
this is the only data conversion between client and server. It is always performed by the server
following the idea that the extra load on the client (the simulation) should be as low as possible.
This means that in contrast to e.g. MPI, the data must have the same representation (except for the
byte order) on both sides of the application.

It is in the users responsibility to specify correct data types. E.g. on a Cray T3E the C–type

8 CHAPTER 2. GENERAL CONCEPTS OF VISIT

short matchesVISIT_INT32 on many other it isVISIT_INT16. Currently, there is only little
help: we have typedef’d the data–typesvint16 andvint32 in thevisit–header file to the proper
integer type — where available. Strings may be sent usingndim=1 andn1=strlen(data) in C
programs. However, due to non–portable string representations in FORTRAN, there is an additional
function visit_send_string (see 3.9) to send strings. This function may also be used in C
programs. There is no way to transfer arrays of strings with a single function call.

In C and FORTRAN it is generally assumed that the data is contained in a continuous piece of
memory.n1 is the ’fastest index’, therefore a 4D–array to be handled byvisit would be
a[n4][n3][n2][n1] in C (and Perl) andA(N1,N2,N3,N4) in FORTRAN. Thedata–para-
meter of thevisit functions has to be the address of the first data item.

2.6 Visit and Perl5

The Perl interface tovisit is different from the C and FORTRAN bindings. We tried to keep it
closer to what is common practice for many OO–style Perl modules. As already mentioned, avisit–
connection is represented by aVisit–object in Perl, not by an integer descriptor like in C and
FORTRAN. Therefore, most of thevisit–functions are object–methods in Perl. Generally, all pa-
rameters to those methods are ’named’ (like-timestamp => 1.1) instead of ’positional’. With
respect to the envelope, there are two other differences. The first is related to the dimension, offset,
and stride. Instead of ’unrolling’ these parameters in the parameter list of the methods, the Perl in-
terface uses references to arrays containing those values, e.g.-dim => [$n1, $n2, ...]
instead of-n1 => $n1, -n2 => $n2, ...
There is nondim parameter. Instead, the dimensionality of the data is the length of the-dim–array.

The second difference concerns the receive functions, where envelope information has to be re-
turned to the caller. In C this is done by passing the these parameters per reference. In Perl, you
may addvar to the name of a parameter and pass a reference to the variable containing the data.
To obtain the timestamp, you would pass-timestampvar => \$timestamp to a method
that receives a message. If you know what you are doing, you may choose to ignore the timestamp
that is part of the received message and use the standard form-timestamp => $timestamp.
Note that when the parameter is already a reference, the use of this mechanism does not take a
2nd reference. It only indicates, that the envelope information should be passed back to the pa-
rameter. If you use-dimvar => \@dim, the dimensions will be returned in@dim, if you use
-dim => \@dim they will not. In the description of the API those parameters that may obtain a
var postfix are noted with:(&).

Another thing specific to perl is how thedata is passed. In C and FORTRAN, you pass the
address of the first element of a continuous block of memory containing all the data. In Perl, you
pass a reference to a normal 1...4–D Perl array. For the size of the array, the-dim parameter is
determining. If the array is too small or containsundef values, the missing values are transmitted
as zeros. You may pass an optional parameter-flat. If set to a true value, thedata parameter
has to be a reference to a 1D–array of the proper size. The same holds for the methods that receive
data. A reference to a 1...4–D array is returned. With-flat set to true, a reference to a 1D array
is returned instead. If the-flat notation is used, the order of the data is like in C and FORTRAN:
the first element of the-dim–array is the ’fastest index’.

You may also pass an optional parameter-pack (that is mutual exclusive to-flat). If set to a
true value, the data will be packed into a Perl–string (for a receiving method) or has to be passed in
a packed string (for sending methods). Since the data is stored in its natural representation, it uses
far less space that an array of Perl scalars. The access to individual elements is more complicated,
it requires unpack or pack/substr to read or modify individual elements of the data.

Chapter 3

The Visit Client API

The API for thevisit–client contains just five groups of functions. These groups are connect and
disconnect for establishing and shutting down connections, send and receive for exchanging data
and configure for modifying properties of a connection.

The first group establishes connections to the server. For each protocol that is supported byvisit,
there is at least one such function. Currently, there are functions for TCP/IP connections with
or without usingseap and for connections to files. The connect–functions are the only protocol–
dependent functions. If successful, they return an integer connection descriptor (C, FORTRAN) or
a connection object (Perl) that is used by all of the other functions to identify the connection (like a
UNIX file descriptor).

3.1 Usage

To use thevisit–client functions, put one of the following lines of code in your program:

#include "visit.h" /* C */

include ’fvisit.h’ // FORTRAN

use Visit; # Perl

9

10 CHAPTER 3. THE VISIT CLIENT API

3.2 visit connect

int visit_connect(char *service, char *passwd, int pollinterval,
int maxpoll,int msg_timeout, int conn_timeout);

SUBROUTINE FVISIT_CONNECT(VCD, SERVICE, PASSWD, POLLINTERVAL,
MAXPOLL,MSG_TIMEOUT, CONN_TIMEOUT,
IERROR)

INTEGER*4 VCD, POLLINTERVAL, MAXPOLL, MSG_TIMEOUT
INTEGER*4 CONN_TIMEOUT, IERROR
CHARACTER*(*) SERVICE, PASSWD

$vcd = Visit->new(-service => $servicename,
-passwd => $passwd,

[-pollinterval => $pollinterval, (2)]
[-maxpoll => $maxpoll, (2)]
[-msg_timeout => $msg_timeout, (2)]
[-conn_timeout => $conn_timeout (-1)]

);

Description:

The first thing a client has to do before it can send or receive data to or from a server is to es-
tablish a connection to that server.visit connect usesseap to locate the server. To obtain
the contact information from theseap–server, it needs both aservice–name and apasswd.
visit connect tries at mostmaxpoll times (with a pause ofpollinterval milliseconds
inbetween) to query theseap–server. If the information is not available after that time,
visit connect returns without establishing the connection. If the client is not able to contact
the server after it has obtained the contact–information from theseap–server, the connect will also
fail. Currently, the connection is based on TCP/IP sockets, but in later versions other protocols that
can also be registered usingseap may be available. To usevisit connect you have to have a
seap–server running somewhere at your site. Hostname (seap server) andport number of
this seap–server also have to be specified.

Two parameters that influence the general behavior of avisit–connection aremsg timeout and
conn timeout. Whenever the client starts a send or receive request, it will return if the server
has not responded to that request aftermsg timeout milliseconds. The assumption is that the
server is busy and it does not make sense to block the client any longer. The connection remains
open for later usage in that case. If a server has responded to a request, but the request could not
be completed afterconn timeout milliseconds, it is assumed that something has gone bad at
the server and the connection is shut down by the client. Both timeouts can be set to -1 to let
the client wait forever. Withconn timeout=-1, the visit–connection will only be shut down
when the socket dies. With these timeouts, the user can control how much delay from the server
(visualization) the client (simulation) is willing to accept.

With the functionvisit configure (3.6) bothmsg timeout andconn timeout can be
modified.

3.3. VISIT CONNECT TO HOST 11

Parameters:
service a service–name that must have been published by the server.
passwd a string that is associated with the service. Unlike the service–name it

cannot be queried from theseap–server.
pollinterval theseap–server is polled every ’pollinterval’ milliseconds, until the ’ser-

vice’ is available.
maxpoll maximum number of polls beforevisit connect is timed out.
msg timeout the client waits for at mostmsg timeout milliseconds after initiating

a read or write request, before it assumes that the server is not ready for
dispatching this request. If that happens, the request is canceled but the
connection remains open.

conn timeout when a request is not finished afterconn timeout milliseconds, the
client assumes that the server is hanging and shuts down the connection.

Return Values:
Binding Success Failure
C a non–negative connection descriptor-1
FORTRAN a non–negative connection descriptor

is stored inVCD, IERROR=1
VCD=-1 andIERROR=0

Perl aVisit object undef

3.3 visit connect to host

int visit_connect_to_host(char *host, int port, char *passwd,
int msg_timeout, int conn_timeout);

SUBROUTINE FVISIT_CONNECT_TO_HOST(VCD, HOST, PORT, PASSWD,
MSG_TIMEOUT, CONN_TIMEOUT, IERROR)

INTEGER*4 VCD, PORT, MSG_TIMEOUT, CONN_TIMEOUT, IERROR
CHARACTER*(*) HOST, PASSWD

$vcd = Visit->new(-host => $host,
-port => $port,
-passwd => $passwd,

[-msg_timeout => $msg_timeout, (2)]
[-conn_timeout => $conn_timeout (-1)]

);

Description:

This function is similar tovisit connect (see 3.2). The only difference is that it does not
useseap to obtain the hostname and port number of the server. The user has to specify those
parameters directly. The advantage is that no extra software (theseap–server) is required. A serious
drawback (which lead us to buildseap) is that ports tend to be ’in use’ by other applications or just
’hang’. With seap, free ports can be choosen by thevisit–server and used by the client without user
interference. We strongly encourage you to useseap. Althoughvisit connect to host does
not useseap a passwd has to be specified because this passwd is not only required for obtaining
contact information from theseap–server but is also required for authorization at the server. See
3.2 for a more detailed description. Please note that Perl uses the functionVisit->new for
connections of all types. The type of the connection that is established depends on the parameters.

12 CHAPTER 3. THE VISIT CLIENT API

Parameters:
host hostname or IP–address of the server.
passwd an authorization string that is associated with the service.
port portnumber of the server onhost.
msg timeout the client waits for at mostmsg timeout milliseconds after initiating

a read or write request, before it assumes that the server is not ready for
dispatching this request. If that happens the request is canceled, but the
connection remains open.

conn timeout when a request is not finished afterconn timeout milliseconds, the
client assumes that the server is hanging and shuts down the connection.

Return Values:
Binding Success Failure
C a non–negative connection descriptor-1
FORTRAN a non–negative connection descriptor

is stored inVCD, IERROR=1
VCD=-1 andIERROR=0

Perl aVisit object undef

3.4 visit connect to file

int visit_connect_to_file(char *filename, char *mode, char *text);

SUBROUTINE FVISIT_CONNECT_TO_FILE(VCD, FILENAME, MODE, TEXT,
IERROR)

INTEGER*4 VCD, IERROR
CHARACTER*(*) FILENAME, MODE, TEXT

$vcd = Visit->new(-filename => $filename,
[-mode => $mode, (’w’)]
[-text => $text (undef)]

);

Description:

This function opens a pseudo–connection. All data that is send via this connection is stored in a file.
The file is opened with modemode which can be either"w" for writing or "a" appending. This
parameter is directly passed to the C–functionfopen, so the semantics are the same. Of course,
receive–requests from a file–connection always fail. An optionaltext can be used to annotate the
file. Please note that Perl uses the same functionVisit->new for file and socket connections.
The type of the connection that is established depends on the parameters.

When appending to a non–empty file,text is ignored. A limitation of the current implementation
is that, when appending to a non–empty file, the writer and the original creator of the file must have
the same byte order.visit connect to file checks that condition and returns -1 if it is not
fulfilled. This means that you cannot create a file on an Intel–Linux box and append to that file on
a Sun Workstation.

Parameters:
filename name of the file to write to.
mode specifies, whether the file should be opened for writing or for appending.
text an optional annotation for the file (NULL for no annotation).

3.5. VISIT DISCONNECT 13

Return Values:
Binding Success Failure
C a non–negative connection descriptor-1
FORTRAN a non–negative connection descriptor

is stored inVCD, IERROR=1
VCD=-1 andIERROR=0

Perl aVisit object undef

3.5 visit disconnect

int visit_disconnect(int vcd);

SUBROUTINE FVISIT_DISCONNECT(VCD, IERROR)

INTEGER VCD,IERROR

$vcd->disconnet();

Description:

To close a connection to a server the client calls this function. The actual action depends on the
type of the connection. For the TCP/IP connections, e.g. the sockets will be closed. For the file–
connection, the file is closed. After callingvisit disconnect, the connection descriptorvcd
is no longer valid. It may be reused by later calls of avisit connect function.

Parameters:

vcd a valid connection descriptor (or Visit object in Perl).

Return Values:
Binding Success Failure
C, Perl 1 0
FORTRAN IERROR=1 IERROR=0

14 CHAPTER 3. THE VISIT CLIENT API

3.6 visit configure

int visit_configure(int vcd, int what, ...);

SUBROUTINE FVISIT_CONFIGURE(VCD, WHAT, VALUE, IERROR)

INTEGER VCD, WHAT, IERROR

$vcd->configure(-parameter_name => $new_value);

Description:

This function can be used to modify properties of an active connection. The parameters depend on
the type of the connection. The parameterwhat is an integer that specifies which property shall be
modified. Symbolic names for these integers are defined in thevisit.h andfvisit.h header
files. The next parameter is the new value of that property. Currently, the following properties can
be modified:

socket–connections:
what property/parameter to changetype of parameter
VISIT MSG TIMEOUT msg timeout integer
VISIT CONN TIMEOUT conn timeout integer

file–connections: none!

The Perl binding uses the names of the properties/parameters (as in the new method) to change
instead of the integerwhat.

Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
what an integer value, specifing the parameter to change.
... the new value of that parameter.

Return Values:
Binding Success Failure
C, Perl 1 0
FORTRAN IERROR=1 IERROR=0

3.7. VISIT SEND 4D 15

3.7 visit send4d

int visit_send_4d(int vcd, int id, double timestamp,
void *data, visit_type vtype, int ndim,
int n1, int n2, int n3, int n4, ...);

SUBROUTINE FVISIT_SEND_4D(VCD,ID,TIMESTAMP,DATA,VTYPE,NDIM,
N1,N2,N3,N4,IERROR)

INTEGER VCD,ID,VTYPE,NDIM,N1,N2,N3,N4,IERROR
REAL*8 TIMESTAMP

$ok = $vcd->send(-id => $id,
-data => $data,
-vtype => $vtype,

[-flat => 1, (0)]
[-pack => 1, (0)]
-dim => [$n1, $n2, ...],

[-offset => [$o1, $o2, ...], (0, 0, ...)]
[-stride => [$s1, $s2, ...], (1, 1, ...)]
[-timestamp => $timestamp,]

);

Description:

This is the main function for sending data from the client to the server. It sends scalar values or
arrays of dimensionndim from 1 to 4. For each dimension, a size parameter (n1 ... n4) has
to be specified. The datatype of the data must be specified as a parameter (vtype).

In the C–bindings, thevtype can be arithmetically or’d with the type modifiers
VISIT OFFSET and/orVISIT STRIDE. In that case additional parameters (o1 ... o4 and/or
s1 ... s4) have to added to the parameter list. With the FORTRAN bindings you cannot use
these optional parameters. Instead, there is an additional function namedvisit send 4d os
which has fixed offset and stride parameters. See 2.5 and 2.4 for a detailed description of datatypes
and the ’envelope’ parametersvtype, ndim, n1 .. n4, o1, .. o4, s1 .. s4,
timestamp.

Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
id an id that classifies the data. The server side can use this id to identify the

data (like the message tag in MPI).
timestamp a parameter that is intended to further characterize the data, but has no

specific meaning.
data pointer to the data to be send (even if a scalar is send).
vtype the datatype of the data (see list above).
flat indicates thatdata is a 1D array (Perl only).
ndim dimensionality of the data, must be 1,2,3, or 4.
n1,n2,n3,n4 size of the data–array, only the firstndim values are used.

In Perl, it’s a reference to an array withndim entries.
o1,o2,o3,o4 optional offsets into the data–array, (seen1..n4 for validity).
s1,s2,s3,s4 optional strides of the data–array, (seen1..n4 for validity).

16 CHAPTER 3. THE VISIT CLIENT API

Return Values:
Binding Success Timed out with no data sent Failure
C 1 0 -1
FORTRAN IERROR=1 IERROR=0 IERROR=-1
Perl 1 0 -1

Examples:

send a
single 4-byte integer: vtype=VISIT INT32,

ndim=1,n1=1
3D double field a[nz][ny][nx]: vtype=VISIT FLOAT64,

ndim=3,n1=nx,n2=ny,n3=nz

The order of the field-dimensions is ’fastest index first’, therefore in FORTRAN, the above param-
eters would apply to a field:A(NX,NY,NZ)

3.8. VISIT SEND 4D OS 17

3.8 visit send4d os

int visit_send_4d_os(int vcd, int id, double timestamp,
void *data, visit_type vtype, int ndim,
int n1, int n2, int n3, int n4,
int o1, int o2, int o3, int o4,
int s1, int s2, int s3, int s4);

SUBROUTINE FVISIT_SEND_4D_OS(VCD,ID,TIMESTAMP,DATA,VTYPE,NDIM,
N1,N2,N3,N4,O1,O2,O3,O4,S1,S2,S3,S4,
IERROR)

INTEGER*4 VCD,ID,VTYPE,NDIM,N1,N2,N3,N4,
INTEGER*4 O1,O2,O3,O4,S1,S2,S3,S4,IERROR
REAL*8 TIMESTAMP

Description:

This function has the same functionality asvisit send 4d. The only difference is that is has a
fixed parameter list including offset and stride. Seevisit send 4d (3.7) for a description of the
parameters and return values. There is no Perl–binding for this function. The following calls are
identical:

visit_send_4d_os(vcd, id, timestamp, data,
vtype, ndim,
n1, n2, n3, n4,
o1, o2, o3, o4,
s1, s2, s3, s4);

visit_send_4d(vcd, id, timestamp, data,
vtype | VISIT_OFFSET | VISIT_STRIDE, ndim,
n1, n2, n3, n4,
o1, o2, o3, o4,
s1, s2, s3, s4);

18 CHAPTER 3. THE VISIT CLIENT API

3.9 visit sendstring

int visit_send_string(int vcd, int id, double timestamp,
void *string, visit_type vtype, int size);

SUBROUTINE FVISIT_SEND_STRING(VCD,ID,TIMESTAMP,STRING,VTYPE,SIZE,
IERROR)

INTEGER VCD,ID,VTYPE,SIZE4,IERROR
CHARACTER*(*) STRING
REAL*8 TIMESTAMP

$ok = $vcd->send(-id => $id,
-string => $string,

[-timestamp => $timestamp]
);

Description:

This function sends a string to the server. The reason to have an extra function for that is that FOR-
TRAN tends to have strange non–portable internal representations of the CHARACTER-datatype.
In C, size must be equal tostrlen(data), in FORTRAN anything not longer than the declared
length of the parameter is allowed. In C you may as well usevisit send 4d and send a string
as a one–dimensional character array.

Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
id an id that classifies the data. The server side can use this id to identify the

data (like the message tag in MPI).
timestamp a parameter that is intended to further characterize the data, but has no spe-

cific meaning.
string string to be send.
vtype the datatype of the data, currently onlyVISIT STRING is allowed, but in

later versions other string–like types may be added.
size number of characters in string (strlen(data) in C).

Return Values:
Binding Success Timed out with no data sent Failure
C 1 0 -1
FORTRAN IERROR=1 IERROR=0 IERROR=-1
Perl 1 0 -1

3.10. VISIT RECV 4D 19

3.10 visit recv 4d

int visit_recv_4d(int vcd, int id, double *timestamp,
void *data, visit_type *vtype, int *ndim,
int *n1, int *n2, int *n3, int *n4, ...);

SUBROUTINE FVISIT_RECV_4D(VCD,ID,TIMESTAMP,DATA,VTYPE,NDIM,
N1,N2,N3,N4,IERROR)

INTEGER VCD,ID,VTYPE,NDIM,N1,N2,N3,N4,IERROR
REAL*8 TIMESTAMP

($data, $ok) =
$vcd->recv(-id => $id,

-vtype (&) => $vtype,
[-flat => 1, (0)]
[-pack => 1, (0)]
-dim (&) => [$n1, $n2, ...],

[-offset (&) => [$o1, $o2, ...], (0, 0, ...)]
[-stride (&) => [$s1, $s2, ...], (1, 1, ...)]
[-timestamp (&) => $timestamp]

);

Description:

This is the main client function for receiving data from the server. It sends read–request to the server,
asking for certain data. This request contains all the ’envelope’ information contained in the func-
tions parameters and the id. See 2.5 and 2.4 for a detailed description of datatypes and the ’envelope’
parametersvtype, ndim, n1 .. n4, o1, .. o4, s1 .. s4, timestamp.
After receiving this request the server is free to send any data to the client — usually he will fulfill
at least parts of the request. To make sure that the received data does not overflow the read buffer
(data), visit recv 4d guarantees that the size of the received data is not larger than the size of
the original request. If the server tries to send more data,visit recv 4d fails and the connection
is shut down. Whenvisit recv 4d returns, the envelope parameters are updated with the data
send by the server.

In the C–bindings, thevtype can be arithmetically or’d with the type modifiers
VISIT OFFSET and/orVISIT STRIDE. In that case additional parameters (o1 ... o4 and/or
s1 ... s4) have to added to the parameter list. With the FORTRAN bindings you cannot use
these optional parameters. Instead, there is an additional function namedvisit recv 4d os
which has fixed offset and stride parameters.

20 CHAPTER 3. THE VISIT CLIENT API

Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
id an id that classifies the data. The server can use this id to identify the data

(like the message tag in MPI).
timestamp a parameter that is intended to further characterize the data, but has no

specific meaning.
data pointer to a user supplied receive buffer for the data

(in Perl a reference to an array).
vtype the datatype of the data (see list in 3.7).
flat indicates thatdata is a 1D array (Perl only).
ndim dimensionality of the data, must be 1,2,3, or 4.
n1,n2,n3,n4 size of the data–array, only the firstndim values are used.

In Perl, it’s a reference to an array withndim entries.
o1,o2,o3,o4 optional offsets into the data–array, (seen1..n4 for validity).
s1,s2,s3,s4 optional strides of the data–array, (seen1..n4 for validity).

Return Values:
Binding Success Timed out with no data sent Failure
C 1 0 -1
FORTRAN IERROR=1 IERROR=0 IERROR=-1
Perl $ok=1 $ok=0, $data=undef $ok=-1, $data=undef

In C and FORTRAN, the envelope information of the received data is returned in the parameters.
In Perl, those parameter names that are marked with(&) have an optional postfixvar. If used,
the parameter has to be a scalar reference instead of a value. In that case, the information is passed
back to the caller, otherwise it is lost (see 2.6).

3.11. VISIT RECV 4D OS 21

3.11 visit recv 4d os

int visit_recv_4d_os(int vcd, int id, double *timestamp,
void *data, visit_type *vtype, int *ndim,
int *n1, int *n2, int *n3, int *n4,
int *o1, int *o2, int *o3, int *o4,
int *s1, int *s2, int *s3, int *s4);

SUBROUTINE FVISIT_RECV_4D_OS(VCD,ID,TIMESTAMP,DATA,VTYPE,NDIM,
N1,N2,N3,N4,O1,O2,O3,O4,S1,S2,S3,S4,
IERROR)

INTEGER*4 VCD,ID,VTYPE,NDIM,N1,N2,N3,N4,
INTEGER*4 O1,O2,O3,O4,S1,S2,S3,S4,IERROR
REAL*8 TIMESTAMP

Description:

This function has the same functionality asvisit recv 4d. The only difference is that is has a
fixed parameter list including offset and stride.

Seevisit recv 4d (3.10) for a description of the parameters and return values. There is no
Perl–binding for this function. The following calls are identical:

visit_recv_4d_os(vcd, id, timestamp, data,
vtype, ndim,
n1, n2, n3, n4,
o1, o2, o3, o4,
s1, s2, s3, s4);

visit_recv_4d(vcd, id, timestamp, data,
vtype | VISIT_OFFSET | VISIT_STRIDE, ndim,
n1, n2, n3, n4,
o1, o2, o3, o4,
s1, s2, s3, s4);

22 CHAPTER 3. THE VISIT CLIENT API

3.12 visit recv string

int visit_recv_string(int vcd, int id, double *timestamp,
void *string, visit_type *vtype, int *size);

SUBROUTINE FVISIT_RECV_STRING(VCD,ID,TIMESTAMP,STRING,VTYPE,SIZE,
IERROR)

INTEGER*4 VCD,ID,VTYPE,SIZE,IERROR
REAL*8 TIMESTAMP
CHARACTER*(*) STRING

($string, $ok) = $vcd->recv(-id => $id,
-size (&) => $size,
-vtype => ’STRING’,

[-timestamp (&) => $timestamp,]
);

Description:

This function requests a string from the server. The reason to have an extra function for that is
that FORTRAN tends to have strange non–portable internal representations of the CHARACTER-
datatype.size contains the maximum allowed number of bytes to store instring. In C you
may as well usevisit recv 4d and ask for a one–dimensional character array.

Parameters:
vcd a valid connection descriptor (or Visit object in Perl).
id an id that classifies the data. The server side can use this id to identify the

data (like the message tag in MPI).
timestamp a parameter that is intended to further characterize the data, but has no spe-

cific meaning.
string string to be received.
vtype the datatype of the data, currently onlyVISIT STRING is allowed, but in

later versions other string–like types may be added.
size number of characters in string (strlen(data) in C).

Return Values:
Binding Success Timed out with no data sent Failure
C 1 0 -1
FORTRAN IERROR=1 IERROR=0 IERROR=-1
Perl $ok=1 $ok=0, $data=undef $ok=-1, $data=undef

In C and FORTRAN, the envelope information of the received data is returned in the parameters.
In Perl, those parameter names that are marked with(&) have an optional postfixvar. If used,
the parameter has to be a scalar reference instead of a value. In that case, the information is passed
back to the caller, otherwise it is lost (see 2.6).

Chapter 4

The Visit server API

Implementing avisit–server is typically more complex than includingvisit–client functions into
an application. One reason is that servers don’t follow a predefined execution path but have to
respond to client requests. This is similar to the way a GUI responds to user actions. In many GUI
building toolkits, you register callback functions that shall be executed when certain events occur.
The management of events and callbacks is typically performed by a ’mainloop’ function which is
part of the toolkit and takes control over the application.

A simplevisit–server would work in a similar way. In an outer loop, the server would wait for client
connections. In an inner loop, the client–requests (identified by their request–id) would have to be
dispatched. However, you have to code that loop yourself, since there is no predefined mainloop
function invisit. The reason behind this is that avisit–server is intended to be part of a visualization
or steering application — and has to cooperate with a GUI toolkit that already has control over the
application.

Therefore the GUI must be able to recognizevisit–events. Unfortunately, how (and if at all) that can
be done depends on both the GUI toolkit and thevisit–protocol. Fortunately, there is currently only
onevisit–protocol, based on TCP/IP sockets. And probably almost every GUI toolkit has the ability
to register callbacks for I/O-requests like socket–connect requests or new data being available at
a file, pipe, or socket. Pre–build servers that demonstrate howvisit works with AVS/Express and
Perl/Tk are part ofvisit. If you want to use other GUI–toolkits you are on your own. However, with
the AVS/Express and Perl/Tk code as examples, you should be able to succeed.

Implementing avisit–server that does nothing but dispatchingvisit–requests is simple. See the test
programsvserv.c andvserv.pl for examples. The general procedure is outlined in figure 4.1.
Thevisit–server is started with a call to a protocol–dependent init–function.

Similar to thevisit–client API, where only the connect–function is protocol–dependent, the init–
function is the only function which is explicitly depending on the protocol. (As noted above, there is
an implicit dependence on the protocol, when the server has to respond to requests asynchronously.)
After initialization the server is ready to connect to a client. When such a connection has been estab-
lished (withvisit srv connect) the server can respond to the client’s requests. As discussed
in section 2, a request is always initiated by an id sent by the client. This id is followed by a message
envelope that contains format information about the message. In case of a send–request, the client
sends the data that has been described by the envelope. In case of a receive–request, the server
sends back an envelope and message data. When the server is ready to dispatch the next request he
informs the client about that by sending an acknowledgment (visit srv ack2).

In the rest of this section, all functions of thevisit server toolkit are described. We don’t provide
FORTRAN language bindings for the server toolkit (who would want to do that ?).

23

24 CHAPTER 4. THE VISIT SERVER API

void main()

visit_srv_init_*

until user wants to exit

visit_srv_connect

until disconnected by client

visit_srv_get_id

visit_srv_get_request

send
TRUE FALSE

 request ?

visit_srv_read_data visit_srv_write_data

visit_srv_ack2

visit_srv_disconnect

visit_srv_shutdown

Figure 4.1: schematic diagram of a simple visit–server.

4.1 Usage

To use the visit–server toolkit, put one of the following lines of code in your program:

#include "visit_srv.h" /* C */

use VisitSrv; # Perl

4.2 visit srv init socket

int visit_srv_init_socket(
char *service, char *passwd, char *host, int port,
int flags, int conn_timeout,
void (*disconnect_cb)(visit_srv_connection *, void *),
void *disconnect_cb_arg,
void (*shutdown_cb)(visit_srv_connection *, void *),
void *shutdown_cb_arg);

$vsrv =
VisitSrv->new(-service => $servicename,

-passwd => $passwd,
[-host => $host, (’*’)]
[-port => $port, (0)]
[-seap_mode => $seapmode, (TOGGLE)]
[-conn_timeout => $conntimeout, (-1)]
[-disconnect_cb=> [\&disconnect_cb, @cb_args],

(undef)]
[-shutdown_cb => [\&shutdown_cb, @cb_args],

(undef)]
);

4.2. VISIT SRV INIT SOCKET 25

Description:

This function creates a socket–based visit–server by opening a listening socket on port port
on the interface specified by host. host can be given in any form that is accepted by the
gethostbyname function (an IP-address or a name that can be resolved to such an address).
With host=’*’, the systems hostname is used instead. If the port is not available, the port num-
ber is increased until a free port is found. When the socket is listening, the host and port are
published at the seap–server using the service and passwd parameters. A client only needs to
know servicename and passwd to contact the server (see section3.2). The conn timeout param-
eter works similarly to the same parameter on the client side. When a request that has been initiated
by the client is not finished after conn timeout seconds, the server assumes that the client is
dead and shuts down the connection. There is currently only one feature controlled by the flags
parameter. If flags is set to VISIT SRV SEAP TOGGLE, the service is unpublished after a client
has connected to the server and published again, after the client has disconnected. Otherwise the
service remains published. In any case, the service is unpublished when the server is shut down (by
visit srv shutdown). In the Perl API, the parameter -seap mode replaces the flags. Here
’TOGGLE’ is default. Use -seap mode => 0 to switch it off.

The callback parameters are important for the interaction with other tools. If set to non-NULL, they
are called when a disconnect or shutdown is performed before anything else is done. This is not
only done, when a disconnect/shutdown is called explicitly by the user, but also when this occurs
automatically due to an error. This mechanism can be used to unregister socket–events (that may
be registered for a GUI toolkit) before the sockets are closed by the visit–server. A visit–server uses
two sockets for that purpose. One is listening for connections. It is opened at init–time and closed
at shutdown–down. It is listening only when there is no active connection. shutdown cb will
typically be used to remove a callback for that socket. A second socket receives the message ids
from the client. disconnect cb will typically be used to remove a callback for that socket.

Upon success visit srv init socket returns a valid visit–server–descriptor, an integer that
is a parameter to all other visit–server functions. For Perl, a VisitSrv object is created.

Parameters:
service a service–name that is published by the server.
passwd a string that is associated with the service. Unlike the service–

name it cannot be queried from the seap–server.
host hostname that is published at the seap–server. If set to +”*”+, the

callers hostname is used.
port initial portnumber for the listening socket. If that port is in use,

the number is increased until a free one is found. If port=0, the
system chooses a free port.

flags if set to VISIT SRV SEAP TOGGLE, the server keeps the service
published only while it is not connected to a client.

conn timeout when a request is not finished after conn timeout seconds, the
server assumes that the client is hanging and shuts down the con-
nection.

disconnect cb a function that is called whenever a connection is terminated or
breaks.

disconnect cb arg argument for disconnect cb.
shutdown cb a function that is called when the server is shut down
shutdown cb arg argument for shutdown cb.

Return Values:
Binding Success Failure
C a non–negative server descriptor -1
Perl a VisitSrv object undef

26 CHAPTER 4. THE VISIT SERVER API

4.3 visit srv init socket raw

int visit_srv_init_socket_raw(char *passwd, char *host, int port,
int flags, int conn_timeout,
void (*disconnect_cb)(visit_srv_connection *, void *),
void *disconnect_cb_arg,
void (*shutdown_cb)(visit_srv_connection *, void *),
void *shutdown_cb_arg);

Description:

This function is similar to visit srv init socket (see 4.2). The only difference is that seap
is not used. The advantage is that no extra software (the seap–server) is required. However, you
have to find another way to communicate the contact information (hostname and port–number) to
the clients. Although seap is not used, a passwd has to be specified, because the clients use that
passwd to authorize at the server. The parameters host and flags are currently not used. We
don’t provide a Perl binding for that function. If you absolutely need one, we leave it as an exercise
for you.

Parameters:
passwd a string that is associated with the service. Unlike the service–

name it cannot be queried from the seap–server.
host not used.
port initial portnumber for the listening socket. If that port is in use,

the number is increased until a free one is found. If port=0, the
system chooses a free port.

flags not used.
conn timeout when a request is not finished after conn timeout seconds, the

server assumes that the client is hanging and shuts down the con-
nection.

disconnect cb a function that is called whenever a connection is terminated or
breaks.

disconnect cb arg argument for disconnect cb.
shutdown cb a function that is called when the server is shut down
shutdown cb arg argument for shutdown cb.

Return Values:
Binding Success Failure
C a non–negative server descriptor -1
Perl a VisitSrv object undef

4.4. VISIT SRV INIT FILE 27

4.4 visit srv init file

int visit_srv_init_file(char *filename);

Description:

This creates a pseudo–server. Instead of connecting to clients, this server reads all requests from
a file that has been been created with a pseudo–client started by visit connect to file (see
section 3.4. Off course, this server type only supports send–requests (it reads client–data from the
file). In contrast to a normal server, it does not connect to clients. The server is ready for dispatching
requests immediately after the init–call.

Parameters:

filename name of a file that contains pre–recorded visit–messages.

Return Values:
Binding Success Failure
C a non–negative server descriptor -1
Perl a VisitSrv object undef

4.5 visit srv connect

int visit_srv_connect(int vsd);

$ok = $vsd->connect();

Description:

This function establishes a connection to a client. It blocks until the connection is available or
an error occurs. To be accepted by the server, the client must authorize itself with the correct
passwd. The function returns ’1’ , when the connections is available, ’0’ if any error has occured.
If VISIT SRV SEAP TOGGLE is set, the service will be unpublished at the seap–server after a
successful connect.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
Return Values:

Binding Success Failure
C, Perl 1 0

28 CHAPTER 4. THE VISIT SERVER API

4.6 visit srv disconnect

int visit_srv_disconnect(int vsd);

$ok = $vsd->disconnect();

This function closes a connection to a client. Depending on the parameters of the server
visit srv init * call, additional actions will be performed. If set, the disconnect cb–
function will be called, before anything else is done. If VISIT SRV SEAP TOGGLE is set, the
service will be published again at the seap–server. Upon success, visit srv disconnect
returns 1 (it never fails to close a connection).

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
Return Values:

Binding Success Failure
C, Perl 1 0

4.7 visit srv shutdown

int visit_srv_shutdown(int vsd);

Description:

This function shuts down a visit–server. After that, the server descriptor vsd is no longer valid. It
may be reused by a later call to visit srv init *. If set, shutdown cb will be called, before
anything else is done. If the server has announced his service at a seap–server, he will unpublish it.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
Return Values:

Binding Success Failure
C, Perl 1 0

4.8. VISIT SRV GET ID 29

4.8 visit srv get id

int visit_srv_get_id(int vsd, int *id);

$id = $vsd->get_id();

Description:

This function reads a request–id from a client. It blocks until the id is available or an error occurs.
In case of an error the client is disconnected.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
id a pointer to the variable that will hold the request–id upon return.

Return Values:
Binding Success Failure
C 1, a request–id in id 0
Perl a request–id undef

30 CHAPTER 4. THE VISIT SERVER API

4.9 visit srv get request

int visit_srv_get_request(int vsd, visit_request *req);

$req = $vsd->get_request();

Description:

This function returns a new request. This request contains the envelope information (see section
2.4) that is read from the visit–client. In the C–bindings, the request information is stored in a struc-
ture named visit request. This structure contains the fields id, timestamp, vtype,
ndim, n1, ... n4, o1, ... o4, s1, ... s4. In Perl, a Visit::Request
object is returned that contains the same fields.
See section 2.6 for a description of the Visit::Request object.

visit srv get request blocks until a request is read or an error occurs. In case of an error,
the client is disconnected.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
req a pointer to a request structure that will hold the message envelope upon return.

Return Values:
Binding Success Failure
C size (in bytes) of the message data. a

request in req
-1

Perl a Visit::Request object undef

4.10 visit srv read data

int visit_srv_read_data(int vsd, void *data, visit_request *req);

$data = $req->read([-flat => 1 (0)],
[-pack => 1 (0)]

);

Description:

This function reads the message data according to the envelope information that is contained in the
request stat–structure (or object) req. The function blocks until all data is read or an error occurs.
In case of an error, the client is disconnected. In C, data must be a pointer to a buffer that is large
enough to hold the requested data. In Perl, a reference to a new array holding the message data is
returned. The dimension of the array is as specified by $req %$ or 1, if flat is set to a true value.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *
req a request structure containing the result of the previous call to

visit srv get request, (a Visit::request–object in Perl).
flat data should be returned in a 1D–array (Perl only).
data a pointer to a buffer of sufficient size to hold the message data

Return Values:
Binding Success Failure
C 1, message in data 0
Perl message in $data undef

4.11. VISIT SRV WRITE DATA 31

4.11 visit srv write data

int visit_srv_write_data(int vsd, void *data,
visit_request *req);

$ok = $req->write(-data => $data,
[-flat => 1 (0)],
[-pack => 1 (0)]

);

Description:

This function sends a complete message (envelope and data) to the client. The envelope information
is taken from req, the data is contained in data. The function blocks until all data is sent or an
error occurs. In case of an error, the client is disconnected. In C, data must be a pointer to a buffer
containing the data. In Perl, it is a reference to an array. The dimension of the array must be as
specified by $req %$ or 1, if flat is set to a true value.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *
req a request structure containing the result of the previous call to

visit srv get request (a Visit::request–object in Perl).
flat data indicates that is a 1D–array (Perl only).
data a pointer to data (data array in Perl).

Return Values:
Binding Success Failure
C, Perl 1 0

32 CHAPTER 4. THE VISIT SERVER API

4.12 visit srv ack2

int visit_srv_ack2(int vsd);

$ok = $vcd->ack2();

Description:

This function sends an acknowledgement to the client which indicates that the server is ready
to receive a new client–request. When the client does not receive this acknowledgement within
msg timeout seconds after initiating a request, he assumes that the server is not ready to accept
this request. In that case, he cancels the request but keeps the connection open. Once the acknowl-
edgement is received by the client, a failure to complete the request within conn timeout will
lead the client to close the connection to the server.

A robust visit–server should call visit srv ack2 only if he is ready to accept the next request
— and not when he has just read the data from the last request.

Upon success, visit srv ack2 returns 1. If an error occures, it returns 0 and disconnects the
client.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
Return Values:

Binding Success Failure
C, Perl 1 0

4.13 visit srv configure

int visit_srv_configure(int vsd, int what, ...);

$vsd->configure(-parameter_name => $new_value);

int visit_srv_configure(int vscd, int what, ...);

Description:

This function can be used to modify properties of an active visit–server. Some of the parameters
are specific to a protocol, some are generic. The parameter what is an integer that specifies which
property shall be modified. Symbolic names for these integers are defined in the visit srv.h
header file. The next parameter is the new value of that property. Currently, the following properties
can be modified.

4.14. VISIT SRV SOCKET LSD, VISIT SRV SOCKET CSD, 33

On socket–connections:
what property/parameter to change type of parameter
VISIT SERVICE service string
VISIT PASSWD passwd string
VISIT HOST host string
VISIT PORT port integer
VISIT CONN TIMEOUT conn timeout integer

If a seap–related parameter is changed, while a server has its service published, these changes are
immediately transmitted to the seap–server.

No parameteres can be configured for file–connections.

The Perl binding uses the names of the properties/parameters (as in the new method) to change
instead of the integer what.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
what an integer value, specifing the parameter to change.
... the new value of that parameter.

Return Values:
Binding Success Failure
C, Perl 1 0

4.14 visit srv socket lsd, visit srv socket csd,

int visit_srv_socket_lsd(int vsd);
int visit_srv_socket_csd(int vsd);

Description:

These functions are specific for the socket-based visit–server. They return the socket–descriptors
of the listening socket (lsd) or the socket that receives the message ids (csd). Events on these
sockets (accept or data available respectively) will trigger actions in typical visit–servers. To achieve
that, the socket descriptors usually need to be registered at the GUI-toolkit (or explicitely used in a
select–call). See 4.2 for details.

Parameters:
vsd a valid visit–server descriptor, as returned by visit srv init *

(a VisitSrv–object in Perl).
Return Values:

The functions return a valid socket descriptor or -1 if the socket is not active.

Chapter 5

The AVS/Express visit–server

This API implements three macros for visit. The module visitserver controls the connection to a
visit client program. The module visitreader and visitwriter are responsible for the data transfer
from/to the visit client program.

Figure 5.1: AVS/Express network which uses the visit macros and the Panel of the visitserver macro.

The visitserver panel contains text widgets for the information which will be published at the seap
server, a status line which describes the actual state of the visit connection and a button which
switches the connection active or inactive. Whenever a request arrives the visitserver delegates the
request to the corresponding visitreader/visitwriter. Therefore the trigger output port of visitserver
contains the id of actual request. The multiplexer macro which is also included in the visit package
activates the corresponding output port and a visitreader/visitwriter which is connected to this port.
This macro reads or writes the data from/to the connection.

The four macros visitserver, visitreader, visitwriter and multiplexer are only wrappers for the cor-
responding modules VisitServer, VisitReader, VisitWriter and Multiplexer which are implemented
in the programming language C. The following sections describes this macros and modules. The
section 8 (Demos) contains two examples for the AVS/Express visit–server.

These visit macros and modules are published at the International AVS Centre1 (IAC) under the
project name Visit. The modules can be found in the Folder Data IO. The two examples described
in the section 8 (Demos) are located in the folder Examples of the IAC library.

1URL: http://www.iavsc.org/

34

5.1. VISITSERVER 35

5.1 visitserver

This functional macro controls the connection to remote applications which uses the VISIT library.

Parameters

The following lists all of the parameters found in the parameter block VisitServerParams, which are
accessed by the module VisitServer and the UI Macro VisitUI.

Name Type Description UI Control
SeapService string Service name under which the visualization

will be announced at the SEAP-Server
UItext

SeapPasswd string password for checking the service at SEAP-
server

UItext

Interface string host-name that is published at SEAP-server.
If set to ”*” the callers hostname is used

UItext

Listen int enables/disables listening socket for connect-
ing to an applications

UItoggle

IdDescriptions string[] data description string for corresponding id -

Output Ports

Name Type Description
SockID int socket descriptor of the data-connection to the remote appli-

cations, needed by the VisitReader module
Trigger int value of the ID-parameter of the actual client request; This

port should be connected with the input port of the multiplexer
module. This module activates one of its own output ports and
a VisitReader or -Writer module connected to it.

Action int describes the status of the connection to a remote application:
0: not listening (Listen==0), 1: listening, but no connected, 2:
connected

Status string describes the status of the connection

Description

This macro controls the connection to remote applications. If the flag Listen is on, it establishes a
socket with the next free port number above the value of the internal parameter Port and announces
the information about this Port at the SEAP-server under the service-name and password from
SeapService and SeapPasswd.

Then it waits for a connection to the announced port. After connecting to a remote application, the
macro waits for requests on this connection. The output port SockId is set to the socket descriptor of
this connection. Each request contains an Id which determines which VisitReader or -Writer should
process the request. The output port Trigger will be set to this value. This port should be connect
with the input port of the multiplexer macro. Depending on the value of Trigger, the multiplexer
activates one of its output ports which in turn activates the visitreader or visitwriter macro connected
to it. This module then reads the request data from the socket.

After a client has connected, the service is deleted from the SEAP-Server. Each visitserver can
control only one connection at a time. Therefore, each time a new connection request comes in the
old connection is shut down. If a connection is shut down by the remote application, visitserver
announces its service again.

36 CHAPTER 5. THE AVS/EXPRESS VISIT–SERVER

The visitserver macro should be used in conjunction with the macros multiplexer, visitreader and
visitwriter.

Inputs

SeapService, SeapPasswd, Interface: Service name and password under which the visualization
will be announced at the SEAP-Server. The SEAP-Server runs on a different machine and stores en-
tries which describe services of visualization applications. Remote applications can ask the SEAP-
Server for such services and then receive the Portnumber of the socket and the hostname on which
the listening socket is established from the SEAP-Server. This additional process removes the need
to use hard-coded Interface names and port numbers. It is also possible to change the visualization
workstation while the remote application keeps on running.

Listen: This flag enables/disables the listening socket. Only if the flag is set, a listening socket will
be established. A running connection will be stopped if the flag is set to off.

IdDescriptions: The messages contain a message id, which determines which VisitReader or -
Writer should process the message. In the string array IdDescriptions a description string can be
assigned to the message Id. This string will be used in status messages in the VisitUI or in stdout
messages.

Outputs

SockID: SockID is the socket descriptor of the data-connection to the remote application. The
macros visitreader and visitwriter need this SockId to read the data from the socket.

Trigger: Trigger is the value of the ID-parameter of the message. It is intended to be used to
transport data to different AVS-modules by the help of the multiplexer macro.

Action: This port describes the status of the connection to a remote application: 0: not listening
(Listen==0), 1: listening, but no connected, 2: connected. This port can be used to switch the color
of a status display like a traffic light: 0: red, 1: yellow, 2: green

Status: This output port describes the status of the connection. The String contains the action (not
listening, listening, connected), the id of last message received and the overall number of messages
received while connected.

Utility Modules

The User Macro visitserver combines the functional Macro VisitServer with the UI Macro Visit-
ServerUI. The User macro contains the parameter block VisitServerParams and an initialized string
array iddescriptions.

Example

An example application VisitGoLEg is provided that works together with the remote application
cgol (game of life) of the VISIT-library distribution (demo/visit sim). The cgol application com-
putes the game of life for a 3d field, which will be sent to AVS/Express every life step. It is possible
to insert new blocks at selectable positions, and to stop and suspend the remote application.

Files

iac proj/visit/visit macs.v contains the V definitions of the functional macro visitserver, the UI
macro VisitServerUI and the example application VisitEg.

5.2. VISITREADER 37

Prerequisites

For using visitserver and to run the demo application the VISIT-library must be installed and also
a SEAP-server must be running. For installation of these tools see this manual or http://www.fz-
juelich.de/zam/visit.

Other Notes

The VisitMacs library inherits its process. As this library contains no procedural code, the process is
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

5.2 visitreader

This functional macro reads data from a visit connection.

Parameters

Name Type Description UI Control
SockID int Socket descriptor of the data-connection to

the remote application.
-

Trigger int visitreader reads data from the data socket if
this port is activated.

-

Output Ports

Name Type Description
TimeStamp double Timestamp of the data send to the visualization
n1 int size of field in dimension 1
n2 int size of field in dimension 2
n3 int size of field in dimension 3
n4 int size of field in dimension 4
DataInt int[] data field, if datatype of message is INT32
DataShort short[] data field, if datatype of message is INT16
DataByte byte[] data field, if datatype of message is BYTE
DataDouble double[] data field, if datatype of message is FLOAT64
DataString string data field, if datatype of message is STRING
DataIntScalar int data, if datatype is INT32 and the field length is 1
DataShortScalar short data, if datatype is INT16 and the field length is 1
DataByteScalar byte data, if datatype is BYTE and the field length is 1
DataDoubleScalar double data, if datatype is FLOAT64 and the field length is 1

Description

This macro reads data from a remote application. It needs a SockID that is provided by a visitserver
macro for a connection. The macro is triggered whenever data arrives at the Trigger port. Trigger
can be connected directly to the Trigger output port of a visitserver. If more than one visitreader
or visitwriter is connected to a visitserver it is necessary to use a multiplexer in order to select one

38 CHAPTER 5. THE AVS/EXPRESS VISIT–SERVER

visitreader or visitwriter macro for each request. There is no implicit distinction between read and
write requests. Therefore the user is responsible for using different IDs for read and write requests.

The values TimeStamp and n1 ... n4 contain the header-information that has been send by the
remote application (using the visit send 4d or visit send string function call). Depending on the
type of data that has been send the data is presented on the appropriate Data output port. With a
field of length n1=n2=n3=n4=1 the data is presented both at a vector and a scalar output port.

The visitreader macro should be used in conjunction with the macros multiplexer, visitserver and
visitwriter.

Inputs

SockID: Socket descriptor of the data-connection to the remote applications. This input port should
be connected with the output port SockID of visitserver.

Trigger: This port should be connected with an output port of the multiplexer macro which is
connected with the Trigger port of the visitserver macro. This port will be activated if a message is
arrived for this reader.

Outputs

Timestamp, n1, n2, n3, n4: Contain the header-information that has been send by the remote
application (using the visit send 4d or visit send string function call).

DataInt, DataShort, DataByte, DataDouble, DataString, DataIntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:
Depending on the datatype of the message one (or two) of these output ports present the data of the
message (see table of output ports above).

Utility Modules

The User Macro visitreader is only a wrapper macro for the module VisitReader. All input and
output ports of this Module are connected with the macro parameters.

Example

An example application VisitGoLEg is provided that works together with the remote application
cgol (game of life) of the VISIT-library distribution (demo/visit sim). The cgol application com-
putes the game of life for a 3d field, which will be sent to AVS/Express every life step. It is possible
to insert new blocks at selectable positions, and to stop and suspend the remote application.

Files

iac proj/visit/visit macs.v contains the V definitions of the functional macro visitreader.

Prerequisites

For using visitreader and to run the demo application the VISIT-library must be installed and also a
SEAP-server must be running. For installation of these tools see http://www.fz-juelich.de/zam/visit.

Other Notes

The VisitMacs library inherits its process. As this library contains no procedural code, the process is
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

5.3. VISITWRITER 39

5.3 visitwriter

This functional macro writes data to a visit connection.
Parameters

Name Type Description UI
SockID int Socket descriptor of the data-connection to the remote

application.
-

Trigger int visitwriter writes data to the data socket if this port is
activated.

-

TimeStamp double Timestamp of the data send to the visualization -
n1 int size of field in dimension 1 -
n2 int size of field in dimension 2 -
n3 int size of field in dimension 3 -
n4 int size of field in dimension 4 -
DataInt int[] data field, if datatype of message is INT32 -
DataShort short[] data field, if datatype of message is INT16 -
DataByte byte[] data field, if datatype of message is BYTE -
DataDouble double[] data field, if datatype of message is FLOAT64 -
DataString string data field, if datatype of message is STRING -
DataIntScalar int data, if datatype is INT32 and the field length is 1 -
DataShortScalar short data, if datatype is INT16 and the field length is 1 -
DataByteScalar short data, if datatype is BYTE and the field length is 1 -
DataDoubleScalar double data, if datatype is FLOAT64 and the field length is 1 -

Description

On request, this macro sends data back to a remote application. Like the visitreader this macro is
triggered by the Trigger port. The Trigger is activated by a request from the remote application
(visit recv 4d or visit recv string) when SockID and Trigger are connected to a visitserver (via
multiplexer). The remote application asks for a specific datatype with specific array dimensionality
and bounds. The datatype of the request is used to select the data to be send from the various input
ports. The array dimensionality and bounds are only used to make sure that the macro does not
send more data than the remote application expects. If the values at n1 ... n4 are connected or set
to something not equal to -1, those values are used for the transfer. Otherwise the values in the
original request remain unchanged if n1*n2*n3*n4 matches the size of the array at the input port
or are set to n1=n2=n3=n4=1. n1 is set to the size of the array at the input port in the latter case. If
ndim=n1=1, the data is taken from a scalar input port.

This sounds obscure to you? It is! Just make sure, that the AVS application always provides the
data that the remote application expects and you don’t have to worry about the parameters n1 to n4
at all.

The visitwriter macro should be used in conjunction with the macros multiplexer, visitserver and
visitreader.

Inputs

SockID: Socket descriptor of the data-connection to the remote applications. This input port should
be connected with the output port SockID of visitserver.

Trigger: This port should be connected with an output port of the multiplexer macro which is
connected with the Trigger port of the visitserver macro. This port will be activated if a request is
arrived for this writer.

40 CHAPTER 5. THE AVS/EXPRESS VISIT–SERVER

Timestamp, n1, n2, n3, n4: Contain the header-information that will be send to the remote appli-
cation.

DataInt, DataShort, DataByte, DataDouble, DataString, DataIntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:
Depending on the datatype of the message one of these input ports gives the data of the message.

Utility Modules

The low-level VisitWriter module is used in the functional macro visitwriter.

Example

An example application VisitGoLEg is provided that works together with the remote application
cgol (game of life) of the VISIT-library distribution (demo/visit sim). The cgol application com-
putes the game of life for a 3d field, which will be sent to AVS/Express every life step. It is possible
to insert new blocks at selectable positions, and to stop and suspend the remote application.

Files

iac proj/visit/visit macs.v contains the V definitions of the functional macro visitwriter.

Prerequisites

For using visitwriter and to run the demo application the VISIT-library must be installed and also a
SEAP-server must be running. For installation of these tools see http://www.fz-juelich.de/zam/visit.

Other Notes

The VisitMacs library inherits its process. As this library contains no procedural code, the process is
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

5.4. MULTIPLEXER 41

5.4 multiplexer

A multiplexer for integer numbers.

Parameters

Name Type Description UI Control
Inval int number which indicates which output port

should be activated.
-

Output Ports

Name Type Description
Out1 ... Out10 int Out<num> will be activated if Inval==num

Description

This simple module is used to trigger one of its output ports whenever it receives something on its
input port. If an integer <num > between 1 and 10 arrives at ’ Inval’ , it is passed to the output Port
Out<num>.
Hint: if your application requires more than 10 IDs you can use multiple ’Multiplexer’s and specify
the connection to the ’VisitServer’ with ’Trigger-10’ (or similar). The ’Multiplexer’ then acts on
trigger values 11 to 20.

Inputs and Outputs

Inval: This port gives the number which indicates which output port should be activated.

Out1 ... Out10: Depending on the value of the input parameter ’ Inval’ one of these outputs port
will be activated.

Utility Modules

The User Macro multiplexer is only a framework for the module Multiplexer. All input and output
ports of this Module are connected with the macro parameters.

Example and Files

An example for this macro can be found in VisitGoLEg. iac proj/visit/visit macs.v contains the V
definitions of the functional macro multiplexer.

Other Notes

The VisitMacs library inherits its process. As this library contains no procedural code, the process is
not important. The modules in the low-level VisitMods library execute under the process specified
in that library, not the process defined in the high-level library. By default the express process will
be used.

42 CHAPTER 5. THE AVS/EXPRESS VISIT–SERVER

5.5 VisitServer

This module controls the connection to remote applications which uses the VISIT library.

module VisitServer<src_file="VisitServer.c",process="express"> {
omethod+notify_inst+req VisitServer_inst (

Port+read+req,Interface+read+req,SeapService+read+req,
SeapPasswd+read+req, Listen+read+req,Action+write, Status+write

) = "VisitServer_inst";
omethod+notify_deinst VisitServer_deinst(

Action+write, Status+write) = "VisitServer_deinst";
omethod+req SeapUpdateService(

SeapService+read+notify+req, Action+write,Status+write
) = "SeapUpdateService";

omethod+req SeapUpdatePasswd(
SeapPasswd+read+notify+req, Action+write, Status+write

) = "SeapUpdatePasswd";
omethod+req SeapUpdateInterface(

Interface+read+notify+req, Action+write, Status+write
) = "SeapUpdateInterface";

omethod+req ListenUpdate(
Listen+read+notify+req, Action+write, Status+write

) = "ListenUpdate";
omethod+req IdDescriptionsUpdate(

IdDescriptions+read+notify) = "IdDescriptionsUpdate";
int Port<NEportLevels={0,0}> = 0;
string Interface<NEportLevels={2,0}> = "*";
int Listen<NEportLevels={2,0}> = 0;
string SeapService<NEportLevels={2,0}> = "VISIT_AVS";
string SeapPasswd<NEportLevels={2,0}> = "demo";
int SockID<NEportLevels={0,2}> = -1;
int Trigger<NEportLevels={0,2}> = 0;
int Action<NEportLevels={0,2}> = 0;
string Status<NEportLevels={0,2}> = "<Init>";
string IdDescriptions<NEportLevels={2,0}>[];
ptr internal<NEportLevels={0,0}>;

};

Description
This module controls the connection to remote applications. If the flag Listen is on, it establishes
a socket with the next free port number above the value of the internal parameter Port and an-
nounces the information about this Port at the SEAP-server under the service-name and password
from SeapService and SeapPasswd. Then it waits for a connection to the announced port. After
connecting to a remote application, the module waits for requests on this connection. The output
port SockId is set to the socket descriptor of this connection. Each request contains an Id which
determines which VisitReader or -Writer should process the request. The output port Trigger will
be set to this value. This port should be connect with the input port of the multiplexer module.
Depending on the value of Trigger, the multiplexer activates one of its output ports which in turn
activates the VisitReader or -Writer module connected to it. This module then reads the request
data from the socket. After a client has connected, the service is deleted from the SEAP-Server.
Each VisitServer can control only one connection at a time. Therefore, each time a new connec-
tion request comes in the old connection is shut down. If a connection is shut down by the remote
application, VisitServer announces its service again.

The VisitServer module should be used in conjunction with the modules Multiplexer, VisitReader
and VisitWriter.

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

5.5. VISITSERVER 43

Inputs

SeapService, SeapPasswd, Interface: Service name and password under which the visualization
will be announced at the SEAP-Server. The SEAP-Server runs on a different machine and stores en-
tries which describe services of visualization applications. Remote applications can ask the SEAP-
Server for such services and then receive the Portnumber of the socket and the hostname on which
the listening socket is established from the SEAP-Server. This additional process removes the need
to use hard-coded Interface names and port numbers. It is also possible to change the visualization
workstation while the remote application keeps on running.

Listen: This flag enables/disables the listening socket. Only if the flag is set, a listening socket will
be established. A running connection will be stopped if the flag is set to off.

IdDescriptions: The messages contain a message id, which determines which VisitReader or -
Writer should process the message. In the string array IdDescriptions a description string can be
assigned to the message Id. This string will be used in status messages in the VisitUI or in stdout
messages.

Outputs

SockID: SockID is the socket descriptor of the data-connection to the remote application. The
macros visitreader and visitwriter need this SockId to read the data from the socket.

Trigger: Trigger is the value of the ID-parameter of the message. It is intended to be used to
transport data to different AVS-modules by the help of the multiplexer macro.

Action: This port describes the status of the connection to a remote application: 0: not listening
(Listen==0), 1: listening, but no connected, 2: connected. This port can be used to switch the color
of a status display like a traffic light: 0: red, 1: yellow, 2: green

Status: This output port describes the status of the connection. The String contains the action (not
listening, listening, connected), the id of last message received and the overall number of messages
received while connected.

Utility Modules

The low-level VisitServer module is used in the functional macro visitserver.

Example and Files

An example for this macro can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the VisitServer module.

44 CHAPTER 5. THE AVS/EXPRESS VISIT–SERVER

5.6 VisitReader

This functional macro reads data from a visit connection.

module VisitReader<src_file="VisitReader.c",process="express"> {
omethod+req VisitReader_read(
SockID+read+req,Trigger+read+notify+req,DataDoubleSize+write,
DataDouble+write,TimeStamp+write,n1+write,n2+write,n3+write,
n4+write,DataIntSize+write,DataInt+write,DataShortSize+write,
DataShort+write,DataByteSize+write,DataByte+write,
DataString+write,DataIntScalar+write,DataShortScalar+write,
DataByteScalar+write,DataDoubleScalar+write

) = "VisitReader_read";
int SockID<NEportLevels={2,0}> = -1;
int Trigger<NEportLevels={2,0}> = 0;
double TimeStamp<NEportLevels={0,2}>;
int n1<NEportLevels={0,2}> = -1;
int n2<NEportLevels={0,2}> = -1;
int n3<NEportLevels={0,2}> = -1;
int n4<NEportLevels={0,2}> = -1;
int o1<NEportLevels={0,0}> = -1;
int o2<NEportLevels={0,0}> = -1;
int o3<NEportLevels={0,0}> = -1;
int o4<NEportLevels={0,0}> = -1;
int s1<NEportLevels={0,0}> = -1;
int s2<NEportLevels={0,0}> = -1;
int s3<NEportLevels={0,0}> = -1;
int s4<NEportLevels={0,0}> = -1;
int DataIntSize = 0;
int DataInt<NEportLevels={0,2}>[DataIntSize];
int DataShortSize = 0;
short DataShort<NEportLevels={0,2}>[DataShortSize];
int DataByteSize = 0;
byte DataByte<NEportLevels={0,2}>[DataByteSize];
int DataDoubleSize = 0;
double DataDouble<NEportLevels={0,2}>[DataDoubleSize];
string DataString<NEportLevels={0,2}>;
int DataIntScalar<NEportLevels={0,2}>;
short DataShortScalar<NEportLevels={0,2}>;
byte DataByteScalar<NEportLevels={0,2}>;
double DataDoubleScalar<NEportLevels={0,2}>;
omethod+notify_inst VisitReader_inst(
n1+read+write,TimeStamp+write,n2+read+write,n3+read+write,
n4+read+write,DataIntSize+write,DataInt+write,DataByteSize+write
,DataByte+write,DataShortSize+write,DataShort+write,
DataDoubleSize+write,DataDouble+write,DataString+write,
DataIntScalar+write,DataShortScalar+write,DataByteScalar+write,
DataDoubleScalar+write

) = "VisitReader_inst";
};

5.7. VISITWRITER 45

Description
This module reads data from a remote application. It needs a SockID that is provided by a Vis-
itServer module for a connection. The module is triggered whenever data arrives at the Trigger
port. Trigger can be connected directly to the Trigger output port of a VisitServer. If more than one
VisitReader or VisitWriter is connected to a VisitServer it is necessary to use a Multiplexer in order
to select one VisitReader or VisitWriter module for each request. There is no implicit distinction
between read and write requests. Therefore the user is responsible for using different IDs for read
and write requests.

The values TimeStamp and n1 ... n4 contain the header-information that has been send by the
remote application (using the visit send 4d or visit send string function call). Depending on the
type of data that has been send the data is presented on the appropriate Data output port. With a
field of length n1=n2=n3=n4=1 the data is presented both at a vector and a scalar output port.

The VisitReader macro should be used in conjunction with the modules Multiplexer, VisitServer
and VisitWriter.

Inputs

SockID: Socket descriptor of the data-connection to the remote applications. This input port should
be connected with the output port SockID of visitserver.

Trigger: This port should be connected with an output port of the multiplexer macro which is
connected with the Trigger port of the visitserver macro. This port will be activated if a message is
arrived for this reader.

Outputs

Timestamp, n1, n2, n3, n4: Contain the header-information that has been send by the remote
application (using the visit send 4d or visit send string function call).

DataInt, DataShort, DataByte, DataDouble, DataString, DataIntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:
Depending on the datatype of the message one (or two) of these output ports present the data of the
message (see table of output ports above).

Utility Modules

The low-level module VisitReader is used in the functional macro visitreader.

Example and Files

An example for this module can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the VisitReader module.

Other Notes

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

5.7 VisitWriter

This module writes data to a visit connection.

module VisitWriter<src_file="VisitWriter.c",process="express"> {
omethod+req VisitWriter_read(
SockID+read+req,Trigger+read+notify+req,DataDouble+read,
TimeStamp+read,n1+read,n2+read,n3+read,n4+read,DataInt+read,

46 CHAPTER 5. THE AVS/EXPRESS VISIT–SERVER

DataShort+read,DataByte+read,DataString+read,
DataIntScalar+read,DataShortScalar+read,DataByteScalar+read,
DataDoubleScalar+read

) = "VisitWriter_read";
int SockID<NEportLevels={2,0}> = -1;
int Trigger<NEportLevels={2,0}> = 0;
double TimeStamp<NEportLevels={2,0}> = 0.;
int n1<NEportLevels={2,0}> = -1;
int n2<NEportLevels={2,0}> = -1;
int n3<NEportLevels={2,0}> = -1;
int n4<NEportLevels={2,0}> = -1;
int o1<NEportLevels={0,0}> = -1;
int o2<NEportLevels={0,0}> = -1;
int o3<NEportLevels={0,0}> = -1;
int o4<NEportLevels={0,0}> = -1;
int s1<NEportLevels={0,0}> = -1;
int s2<NEportLevels={0,0}> = -1;
int s3<NEportLevels={0,0}> = -1;
int s4<NEportLevels={0,0}> = -1;
int DataInt<NEportLevels={2,0}>[];
short DataShort<NEportLevels={2,0}>[];
byte DataByte<NEportLevels={2,0}>[];
double DataDouble<NEportLevels={2,0}>[];
string DataString<NEportLevels={2,0}> = "";
int DataIntScalar<NEportLevels={2,0}> = -1;
short DataShortScalar<NEportLevels={2,0}> = -1;
byte DataByteScalar<NEportLevels={2,0}> = -1;
double DataDoubleScalar<NEportLevels={2,0}> = -1.;

};

Description

On request, this module sends data back to a remote application. Like the VisitReader this module
is triggered by the Trigger port. The Trigger is activated by a request from the remote application
(visit recv 4d or visit recv string) when SockID and Trigger are connected to a VisitServer (via
multiplexer). The remote application asks for a specific datatype with specific array dimensionality
and bounds. The datatype of the request is used to select the data to be send from the various input
ports. The array dimensionality and bounds are only used to make sure that the module does not
send more data than the remote application expects. If the values at n1 ... n4 are connected or set
to something not equal to -1, those values are used for the transfer. Otherwise the values in the
original request remain unchanged if n1*n2*n3*n4 matches the size of the array at the input port
or are set to n1=n2=n3=n4=1. n1 is set to the size of the array at the input port in the latter case. If
ndim=n1=1, the data is taken from a scalar input port.

This sounds obscure to you? It is! Just make sure, that the AVS application always provides the
data that the remote application expects and you don’t have to worry about the parameters n1 to n4
at all.

The VisitWriter module should be used in conjunction with the modules Multiplexer, VisitServer
and VisitReader.

Inputs

SockID: Socket descriptor of the data-connection to the remote applications. This input port should
be connected with the output port SockID of visitserver.

5.7. VISITWRITER 47

Trigger: This port should be connected with an output port of the multiplexer macro which is
connected with the Trigger port of the visitserver macro. This port will be activated if a request is
arrived for this writer.

Timestamp, n1, n2, n3, n4: Contain the header-information that will be send to the remote appli-
cation.

DataInt, DataShort, DataByte, DataDouble, DataString, DataIntScalar, DataShortScalar,
DataByteScalar, DataDoubleScalar:
Depending on the datatype of the message one of these input ports gives the data of the message.

Utility Modules

The low-level module VisitWriter is used in the functional macro visitwriter.

Example and Files

An example for this module can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the VisitWriter module.

Other Notes

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

48 CHAPTER 5. THE AVS/EXPRESS VISIT–SERVER

5.8 Multiplexer

A multiplexer for integer numbers.

module Multiplexer<src_file="Multiplexer.c",process="express"> {
omethod+req Multiplex(Inval+read+notify+req,Out1+write,
Out2+write,Out3+write,Out4+write,Out5+write,Out6+write,
Out7+write,Out9+write,Out10+write)="Multiplex";

int Inval<NEportLevels={2,0}>;
int Out1<NEportLevels={0,2}>;
int Out2<NEportLevels={0,2}>;
int Out3<NEportLevels={0,2}>;
int Out4<NEportLevels={0,2}>;
int Out5<NEportLevels={0,2}>;
int Out6<NEportLevels={0,2}>;
int Out7<NEportLevels={0,2}>;
int Out8<NEportLevels={0,2}>;
int Out9<NEportLevels={0,2}>;
int Out10<NEportLevels={0,2}>;

};

Description

This simple module is used to trigger one of its output ports whenever it receives something on its
input port. If an integer <num> between 1 and 10 arrives at ’ Inval’ , it is passed to the output Port
Out<num>.
Hint: if your application requires more than 10 IDs you can use multiple ’Multiplexer’s and specify
the connection to the ’VisitServer’ with ’Trigger-10’ (or similar). The ’Multiplexer’ then acts on
trigger values 11 to 20.

Inputs and Outputs

Inval: This port gives the number which indicates which output port should be activated.

Out1 ... Out10: Depending on the value of the input parameter ’ Inval’ one of these outputs port
will be activated.

Utility Modules

The low-level Multiplexer module is used in the functional macro multiplexer.

Example and Files

An example for this module can be found in VisitGoLEg. iac proj/visit/visit mods.v contains the V
definitions of the Multiplexer module.

Other Notes

By default the low-level library visit mods, which needs to be compiled, has the process set to
express.

Chapter 6

seap — the service announcement
protocol

seap is an acronym for service announcement protocol. The idea is that if a client and a server
want to get into contact, they either need to agree about a contact point in advance or they need
a third party to exchange that information. The ’seap server’ supplies this service using the
’service announcement protocol’ . A visit–server application announces a service by telling the
’seap server’ a ’service name’ , a ’passwd’ and where this service can be reached (hostname
and portnumber). A client-application can query this information if it knows the service name and
the passwd.

Why reinvent the wheel once more ? Well, seap has very limited functionality, has no access control,
almost no security, and no persistence incorporated, but it also is a very thin layer: the server has
only about 220 lines of perl-code, the client only some 140 lines of C-code. Thus, SEAP can easily
be ported and incorporated in any non-real-world-production (of course !) code.

seap consists of:
seap server a Perl-implementation of the seap–server.
seap a Perl/Tk-based client that can be used to monitor the state of the

seap server.
seap.c the C-client functions (part of the visit-library).
Seap.pm a Perl module with seap client functions.
sclient a demo-client program.
visitrc a system–wide configuration file that tells clients where the server is

located.
$HOME/.visitrc an optional private configuration file that can override visitrc

The location of the seap–server is taken from a config file named visitrc that is installed in the
same directory as the visit–library libvisit.a. The hostname where the seap–server is running
as well as the port–number where the server accepts requests are taken from that file. The format is
as follows:

seap_server : seapserver.mydomain.de
seap_port : 4711

The values in this file can be overridden by a file named .visitrc in the user’s home–directory.

49

50 CHAPTER 6. SEAP — THE SERVICE ANNOUNCEMENT PROTOCOL

6.1 The seap–server

To use seap, you need to have the seap server running at least during the runtime of both
the visit–client and –server application. The typical mode of operation is to have the seap–server
permanently running on a machine at your site, so that clients can register and query services all the
time. The shell–script check seap server should be run periodically from cron to monitor the
seap–server and restart it if needed.

A normal user can query or unpublish only those services for which he knows the passwd. However,
the seap–server has a ’master–passwd’ that can be used to query and unpublish any service. But
even with this master–passwd it is not possible to obtain other passwds.

The seap server reads its parameters from a configuration file. The name of the file can be
given on the command line (default is $HOME/.visitserverrc.) The format of the config file
is as follows:

seap_port : 4711
seap_pidfile : /tmp/seap_server.pid
seap_passwd : master_passwd
seap_debug : 1

These values have the following meaning:

seap port the portnumber of the port where clients connect to the server.
seap pidfile the name of a file, where the server stores its process id. The shell script

check seap server uses this file to check whether the server is run-
ning or has to be restarted.

seap passwd the master–passwd.
seap debug this parameter is optional. If set to non-zero, the server prints logging

messages (including passwords !) to stdout. So, please use it only for
debugging.

6.2 The seap client functions

The seap client API provides functions for publishing, unpublishing, and querying services at a
seap–server. We only provide bindings for C and Perl. The Perl API has extra functions for dump-
ing and multiple deletion of services registered at the seap–server. FORTRAN bindings are not
provided since seap will normally not be used directly by an application but implicitly by via visit.

6.2.1 Usage

To use the seap client functions, put one of the following lines of code in your program:

#include "seap.h" /* C */

use Seap; # Perl

In a Perl program, you have to create a seap–client object, that does nothing more than remem-
bering the parameters that usually don’t change during a session. These are the hostname and
port–number of the seap–server ($serverhost, $serverport) and parameters that specify
how often ($maxpoll) a client polls the seap–server for information and how long he will wait
between two querys ($pollinterval).

$seap = new Seap($pollinterval, $maxpoll);

6.2. THE SEAP CLIENT FUNCTIONS 51

6.2.2 seap publish

int seap_publish(const char *service, const char *passwd,
const char *host, int port);

$ok = $seap->publish($service, $passwd, $host, $port);

Description:

register a service with the ’seap server’ .

Parameters:
service the name of the service to publish.
passwd the (secret) passwd associated with the service.
host the name of the host that provides the service if ’*’ is used, the seap server

replaces this by the name of the host that called ’seap publish’ .
port the portnumber where the serving host listens for clients.

Return Values:

The function returns 1 on success, 0 otherwise.

6.2.3 seap unpublish

int seap_unpublish(const char *service, const char *passwd);

$ok = $seap->unpublish($service, $passwd);

Description:

delete a previously registered service on the ’seap server’ .

Parameters:

Parameters:
service the name of the service to delete.
passwd the (secret) passwd associated with the service.

Return Values:

The function returns 1 on success, 0 otherwise.

6.2.4 seap query

int seap_query(const char *service, const char *passwd,
char * const host, int * const port,
int pollinterval, int maxpoll);

($host, $port) = $seap->query($service, $passwd);

Description:

queries the ’seap server’ for a named service.

52 CHAPTER 6. SEAP — THE SERVICE ANNOUNCEMENT PROTOCOL

Parameters:
service the name of the service to query.
passwd the (secret) passwd associated with the service.
host,port name and port-number of the server (output parameters!).
pollinterval query the server every pollinterval seconds if the service is not registered

at the ’seap server’ .
maxpoll don’t query more than maxpoll times.

In the Perl binding pollinterval and maxpoll are taken from the seap–object.

Return Values:

The function returns 1 on success, 0 otherwise.

6.3 seap demo clients

The Tk-client seap is more or less self-explanatory. Per default, it queries the seap server
every 5 seconds for all registered services and displays them. Using the File-Menu, you can switch
of this auto-update feature (but not change the interval). You may also manually update the infor-
mation (Update-Button), delete an entry (by selecting it and pressing the ’Delete’ -Button), modify
it (by selecting it, pressing the ’Edit’ Button, and changing it in the text input-field - with the Enter-
key or the ’ Insert:’ -button the changes are accepted). You may also enter new entries in the text
input-field, accepting the with the Enter-key or the ’ Insert:’ -button.

seap is usually started with
seap -passwd=<passwd> [-height=<height>]
All of its actions only refer to services that have the passwd given on the command line. The
optional height–parameter can be used to specify the number of lines in the display.

An alternate way of starting seap is
seap -master=<master passwd> [-height=<height>]
With the correct master–passwd of the seap–server, seap displays all published services. In
master–mode it is possible to delete services with any passwd. However it is not possible to ex-
tract passwds or to enter or modify services. This keeps a certain amount of privacy for the users
by not exposing their passwords to the maintainer of the seap server. For the seap server,
only the combination of service-name and passwd needs to be unique. Therefore, in master–mode
seap may display several services with the same service–name.

sclient is a simple C–based seap–client. It can publish, query and unpublish services. The usage
is:

sclient -p <service> <passwd> <host> <port> ; publish a service
sclient -q <service> <passwd> ; query a service
sclient -d <service> <passwd> ; unpublish a service

Chapter 7

Tools

7.1 seap – monitoring the seap–server

seap is a small Perl/Tk based monitoring tool for seap. In its normal mode, it displays a list of all
services that are registered at the seap–server with a certain password. The GUI lets you unregister
services, edit them or add new ones. The purpose of seap is to give you informations about your
visit–servers and –clients. Typically, services will show up when your server is ready, disappear,
when the client connects, and show up again when the client is disconnected. You may also use it
to unregister old services that may remain registered when your visit–server application crashes.

Figure 7.1: seap displaying a couple of services related to the Game of life demo.

Usage:

seap [-height=<height> [-passwd=[<passwd>]]

The with optional height–parameter, you can choose the initial size of the window.

The optional verb+-passwd+–parameter can be used to specify the password on the commandline.
Normally, you should not use this parameter, because other users can obtain your commandline
with the ps–command. If you don’t specify a password, the GUI will prompt you for one.

seap also has a ’master–mode’ . To operate in this mode, you have to know the master–password
of the seap–server (as specified in .seapserverrc). When started in master–mode, all services
are displayed, no matter which key is associated with them. Services can be unregistered, but you
cannot edit them or add new ones. This restriction is not imposed by the tool but by the seap–server.
The idea behind that is, that an administrator must be able to remove garbage from the seap–server
but should not alter user data (see section 6).

Usage:

seap -master[=<master_passwd>] [-height=<height>

Like in normal mode, you can specify the password on the commandline. You can switch between
normal and master mode by selecting ’Password’ in the ’File’ menu. A dialog pops up that lets you
change password and mode.

53

54 CHAPTER 7. TOOLS

When ’autoupdate’ is active (the default), seap refreshes its list with current data from the seap–
server every 5 seconds.

To unregister or edit a service, select it with the left mouse button. When an update occurs (either
automatically or because you pressed the ’update’ button) before you have pressed the ’delete’ or
’edit’ button, your selection is canceled and you have to repeat it.

7.2 vbroker – attaching multiple visualizations

vbroker is a Perl/Tk based tool that lets you attach multiple visit–servers (aka visualizations) to
a single visit–client (simulation). It does this by forwarding all send–requests from the client to
all attached servers. Receive–requests however, are only forwarded to a single server. vbroker
lets you choose at any time, which server will get receive–requests. This means that you may have
multiple passive viewers but only one visualization may steer the application.

vbroker can also be used to record data from the simulation to one or more files, or replay
previously recorded data.

The tool maintains a list of all requests of the simulation with informations about which visualiza-
tions received each request. While this is mainly intended for monitoring the status of the multiple
visualizations, it can also be used to debug your application: If you put vbroker between your
simulation and visualization, you get detailed information about the communication between them.

The main part of the GUI consists of three panels. Only one of then is visible at a time. With the
’Client connection / Simulation’ panel you control the connection to the simulation, with the ’Server
connections / Visualizations’ panel you control the connections to the attached visualizations. The
’Messages’ panel displays a history of the status messages that appear in the bottom line of the GUI.

The current version of VBroker may crash with a segmentation fault when you press the exit button.
We are not sure whether this is caused by visit or by problems within Perl/Tk which are related to
cleaning up fileevent–bindings at exit. Since this only occurs when you exit VBroker, we consider
it a minor problem.

7.2.1 The ’Client connection / Simulation’ panel

With this panel you control the connection to the simulation. This client can either be a simulation
or a file.

Figure 7.2: VBroker client and server panels in a typical Game of Life session as described in the example
section 7.2.3.

7.2. VBROKER – ATTACHING MULTIPLE VISUALIZATIONS 55

To connect to a simulation you first have to select ’Seap’ and enter a service/password combination
that the client simulation can connect to. Then press the ’Start’ button. VBroker is now ready to
connect to a simulation and the button text changes to ’Stop’ . When a connection is established,
the ’Pause’ and ’Disconnect’ buttons become active. With ’Pause/Cont’ you can pause/continue
responding to client requests without disconnecting. ’Disconnect’ disconnects the client. When
you press ’Stop’ VBroker will disconnect the client and no longer announce its service or accept
connections.

To read data from a file, select ’File’ and enter the name of a file with pre–recorded data. Here, the
’Start/Stop’ and ’Pause/Cont’ buttons are used to start, stop and pause the replay. The ’fi le event
dilatation’ slider lets you control the speed of the replay. With a value of 1, data is replays with the
same timing as it was recorded, larger values lead to slower, smaller values to faster replay. A value
of 0 means replay as fast as possible.

In the lower part of the window all requests are listed as they are processed. The ’D’ column
shows the ’direction’ (send or receive), ’ id’ is the request id, ’ timestamp’ , ’vtype’ , and ’dim’ are the
corresponding parameters in the request envelope. In the ’servers’ column, all servers are listed that
process the request. Each server is identified by its service– or filename.

The entries in the ’D’ and ’servers’ columns are colored. Green means, that the request has been
precessed successfully, red means it has failed. Note that send requests even succeed when no server
(visualization) is connected, because they are handled by VBroker. Receive requests on the other
hand are passed to a ’master–server’ (see next section). They can only succeed when such a master
is active.

7.2.2 The ’Server connections / Visualizations’ panel

This panel controls the connections to the servers (visualizations). The entry-fields at the top of the
panel let you add servers. By giving their service/passwd combination you add ’real’ servers. You
can also add files, that record the requests from the client simulation. All servers are listed in the
lower part of the panel. For each of them delete, pause/continue and disconnect/reconnect buttons
are created that let you control their operation.

With the radio–button in the column named ’Master’ one of the servers can be selected to be the
’master–server’ . While all servers receive data from the client simulation, only the master gets the
receive–requests. When no master is selected, receive requests from the client fail. If that happens,
you will usually have to press the ’Disconnect’ button in the ’Client connection / Simulation’ panel
to restart the connection.

With each server connection, the service/password or filename is colored on the screen to give you
an impression about what is going on. A connected server is marked in green, a disconnected in
red, a paused in yellow. Behind the name, the number of requests that have been processed by this
server is printed.

7.2.3 Example session

This section demonstrates step by step how you can use VBroker to attach several visualizations to
the game of life simulation that is described in section 8.2. We assume that you have installed visit
with Perl–bindings and compiled the cgol.c located in <prefix>/demo/gol.

Step 1: connect a visualization to VBroker

Start the Perl/Tk gol visualization:

tkgol.pl -server cgol1

You have to select a non–default service name here, because you don’t want to connect directly to
the client.

56 CHAPTER 7. TOOLS

Start VBroker (the program vbroker is installed in <prefix>\bin). Enter the ’Server con-
nections / Visualizations’ panel. Enter cgol1:dcgol as service/password combination and press
the ’add’ button at the right end of the line. In the lower part of the window a line is created for
the connection, the name ’cgol1:dcgol’ should be green to mark an active connection. Press on the
diamond left to the name to make this the ’master–server’ .

Step 2: connect to the simulation

Change to the ’Client connection / Simulation’ panel. Enter ’cgol:dcgol’ as the seap service/passwd
combination. If not already active, click on the diamond at the left of the line to choose a seap–
based connection (in contrast to a file connection). Press the ’Start’ button. The server state should
change from ’–’ to ’no conn’ . This means that VBroker is waiting for a connection.

Start the simulation:

cgol -S 20 20 20 -i -g 10000

are reasonable parameters. It gives you a sufficiently large board, will calculate up to 10000 gen-
erations and insert a runner at a random position. You should immediately see the simulation and
the visualization interact, as if they were connected directly. In the VBroker client panel, you can
watch the requests being processed.

Step 3: connect a second visualization

Start another gol visualization:

tkgol.pl -server cgol2

Edit the service/password combination to read ’cgols:dcgol’ and press ’add’ again. The new visual-
ization should now show the same data as the first one, but pressing ’Stop’ , ’Runner 1/2’ or ’Flood’
should have no effect on the simulation. By selecting the new visualization as the master, you can
change that at any time.

Step 4: log data to a file

Enter ’cgol.log’ as filename in the ’Server connections / Visualizations’ panel and press ’add’ . In
addition to be displayed by the clients, all data is now logged in this file.

Step 5: replay the file

When you have recorded some data, press the ’Delete’ button for ’cgol.log’ to close the file. Switch
to the ’Client connection / Simulation’ panel and press ’Stop’ . The cgol program will be discon-
nected from VBroker and cannot reconnect. Enter ’cgol.log’ as filename, select the ’File’–diamond
and press ’Start’ . The contents of the file is now replayed and sent to the two visualizations. Note
that you can alter the speed of the replay with the ’fi le event dilatation’ slider.

Chapter 8

Demo Programs

This chapter gives a brief description of the programs located in the demo subdirectories. More
information can be found in the source code. Here, we mainly describe the functionality and usage
of the demos.

8.1 Test clients and servers

The programs listed in this section are located in the directory demo/test. During the installation
only those demos that can be executed in your environment are installed to
<prefix>/demo/test. The programs are just simple visit–clients and –servers that test the ba-
sic functionality of visit and the language bindings. Besides that, they do nothing useful. Especially
the C versions vclient.c and vserv.c contain lots of comments in the source code.

8.1.1 vclient.c

A simple visit–client. Connects to a visit–server and sends and receives small amounts of data of
all supported types. Service–name and key are hard–coded to vserv and demo_passwd. The
received data is printed to the screen.

Usage:

vclient [-f <filename>] [-p] [-n <loops>]

If the -f option is given, all data that is sent to the visit–server will also be written into the specified
file.

If the -p option is given, vclient polls the seap–server for the service until a connection to the
visit–server is established.

if the -p option is given, the program cycles loops times through the send/receive calls before it
exits.

8.1.2 vserv.c

A simple visit–server. Service–name and key are hard–coded to vserv and demo_passwd, so
that vserv can co–operate with vclient. vserv accepts client connections in an infinite loop.
All client requests are fulfilled. Data that is sent from the client is displayed (if the datatype is
supported). If a client requests data, dummy values are generated and sent. If an unsupported
datatype is requested, the client is disconnected from the server. vserv has no useful commandline
parameters.

57

58 CHAPTER 8. DEMO PROGRAMS

8.1.3 vclient.pl

A visit–client implemented in Perl. Although its functionality differs slightly from vclient.c it
also co–operates with vserv.c. It connects to the server and sends and receives various data in
normal and packed form and finally disconnects.

Note, that vclient.pl is not completely portable. It uses pack("I", ..) to create a packed
array of INT32 values. This may fail on some platforms (see your perl documentation).

Usage:

vclient.pl [-service <service>] [-passwd <passwd>]
[-h <host>:<port>] [-f <filename>] [-S]

With -f given, all data that is sent to the server is also written to a file. Optionally, service name and
key can be specified (if they differ from the default values). It is also possible to specify hostname
and portnumber of the server directly. In that case, the seap–server is not queried. If -S is given,
only send requests are issued, no data is received.

8.1.4 vserv.pl, tkserv.pl

Two demo visit–servers that have the same functionality as its C counterpart vserv.c. Only the
output to the screen is slightly different. Like vserv.c, vserv.pl and tkserv.pl co–operate
with vclient.c and vclient.pl and have no useful commandline parameters.

tkserv.pl demonstrates how a visit–server can be integrated in the a GUI based on Perl/Tk. The
only trick is to bind appropriate ’fi leevents’ to the sockets of the visit–server.

8.1.5 VisitSimpleEg (AVS/Express)

This example is a counterpart to the (f)vclient.c demo program. It shows the functionality of the
three visit macros visitserver, visitreader and visitwriter. AVS/Express network receives messages
with different datatypes from the client program (Id=1) and sends messages of different datatypes
(Id=2) to the client program.

The parameter of visitserver (SeapService, SeapPasswd and Interface) are changeable in the vis-
itserver panel. The connection between AVS/Express and (f)vclient can be switched on and off
during the run with the Listen toggle in this panel. For this the client program vclient should be
started with the parameter -p and -n i. The status line in the visitserver panel show the actual
state of the connection. The text color notifies the general state like a traffic light: green=connected,
yellow=listening, red=not listening.

This example is part of the visit package of the IAC library and can be found in the Example folder
of the IAC library section of the AVS/Express network editor.

8.1.6 fvclient.f

A demo visit–client implemented in Fortran. It has a similar functionality as its C counterpart and
no commandline parameters.

8.1.7 sclient.c, querytime.c

sclient.c is a seap–client that can be used to publish, query, and unpublish services. It is
described in detail in section 6.3.

querytime.c is a seap–client that displays the time needed to query a service from your seap–
server. This program has no commandline parameters.

8.2. GAME OF LIFE 59

8.2 Game of Life

The example Game of life demonstrates how visit can be integrated in typical simulation program.

The simulation ’cgol’ is a C program that plays the well known ’Game of Life’ in 3 spatial di-
mensions. This game simulates the evolution of a population on the basis of a few simple rules.
The board is divided in cells which can either be populated or not. In each new generation, a cell
survives if it has 5 or 6 neighbors. If an empty cell has 5 neighbors, a new inhabitant is born.

Usage:

cgol <options>

[-S <x> <y> <z>] size of 3D-Field
[-g <maxgenerations>] max. number of generations calculated
[-i] insert a runner type 1 at position 1,1,1
[-s <service>] contact point of the server (cgol)
[-p <passwd>] contact point of the server (dcgol)
[-v] verbose (off)

If the commandline option -i is given, the program inserts at runner (a constellation of living cells
which walks through the 3d field) the beginning of the simulation. Further insertions of living cells
can only be performed with a visualization/steering tool which is connected to cgol via visit.

After each generation (but at most once per second) the simulation program tries to connect to a
visualization that has announced a service (default service name ’cgol’ , password ’dcgol’ , others
can be specified on the command line) at the seap–server. If successful, cgol transfers the actual
state of the 3d field at every generation. Additionally cgol requests a set of steering parameters
from the visualization. Currently these parameters allow to stop or pause/continue the simulation
and to insert runners (either running along on of the coordinate axis (type 1) or on a diagonal (type
2) or a randomly distributed population. If the insertion of a runner is requested, cgol asks for its
position and orientation. If any action was requested, cgol sends an acknowledgment message to
the visualization after the action is performed. This make sit easier for the visualization to reset its
internal state.

We implemented two visualization tools to display and control cgol: tkgol.pl is a Perl/Tk script
and shows a 2d projection of the 3d field; VisitGolEg is a AVS/Express network which displays the
field in 3d. Both examples include a Panel to control the simulation via visit.

8.2.1 VisitGoLEg (AVS/Express)

The VisitGoLEg example is part of the visit package of the IAC library and can be found in the
Example folder of the IAC library section of the AVS/Express network editor. For the steering
components of the visualization the visitserver panel has been extended. The control buttons and
sliders are arranged below the control elements of the visit connection. So the user has only one
panel to control the connection and the simulation.

The cgol part of the panel contains following elements:

Pause-button: When this checkbutton is activated the simulation stops its calculations and polls the
visualization for the button state every 2 seconds. When the button is deactivated the simulation
continues with the calculation.

Stop-button: When this checkbutton is activated the simulation terminates and the connection to
Express will be closed.

60 CHAPTER 8. DEMO PROGRAMS

Figure 8.1: Visualization and steering for the Game of Life simulation with AVS/Express.

Insert-button: The simulation inserts a runner at the position determined with the three sliders on
the right side of the button. The runner will walk in the direction specified with the direction dial
below the insert button. The value 1 corresponds to the x-axis, 2 to the y-axis and 3 to the z-axis.
A negative value indicates that the runner walks in a negative direction. The value 0 is not allowed.
When the simulation has inserted the runner, it will deactivate the button.

Random-button: If this checkbutton is activated a random number of cells in inner region of the
field will be set. The slider besides the button describes how many of the inner cells should be set.
When the simulation has inserted the cells, it will deactivate the button.

Figure 8.2 shows the top-level network for this example. For the GUI and the communication there
are two macros (GUI) which contain the corresponding macros and modules. With this abstraction
the data flow between the component is identifiable. The output port of the communication macro
contains the actual 3d data field which will be delivered to the visualization macros Axis3D, Bounds
and Glyph. There are several connections between the GUI and the communication macro which
are responsible for the steering parameters (state of the checkbuttons) and the insert positions.

The next figure 8.3 shows the contents of the communication macro. There are two visitwriter
modules and three visitreader modules. The first reader on the right side reads a string from the
visit connection, which contains status messages of cgol. The second reader gets the acknowledg-
ment values, which will be used for resetting the action button when the corresponding action is
performed. The last reader is responsible for the 3d field, which has the datatype INT32. The three
output ports n1, n2, n3 of the reader are concatenated to a array of dimensions which are together
with the integer data stream of field contents (DataInt port of visitreader) a input port of the module
uniform scalar field. The first writer (left side of the network) sends the insert position back to the

8.2. GAME OF LIFE 61

Figure 8.2: Top-level network for this example.

simulation (if requested), the second is responsible for the steering parameters.

Figure 8.3: Network for the communication between AVS/Express and cgol.

62 CHAPTER 8. DEMO PROGRAMS

8.2.2 tkgol.pl

tkgol.pl is a simple but non–trivial example of a visit–server embedded in a Perl/Tk script.
It displays the results of the cgol simulation and supports almost all of its steering capabilities.
tkgol.pl has buttons to pause, continue, and stop the simulation as well as buttons to insert
runners of type 1 or 2 or a random population (the ’Flood’ button). The only limitation is that it is
not possible to enter the position and orientation of the runners or the size of the random population.
For these parameters, random values are sent to the simulation.

Usage:

tkgol.pl <options>

[-service <service>] contact point of the server (cgol)
[-passwd <passwd>] contact point of the server (dcgol)
[-verbose] verbose (off)

Figure 8.4: Visualize and steer the Game of Life simulation with Perl/Tk

Chapter 9

Installation and Porting

For installation please also read the file INSTALL. It may be more up to date.

9.1 Prerequisites

We have tested visit on a couple of UNIX-platforms including Solaris 2.6, Linux 2.2, AIX 4.3, IRIX
5.6, and Unicos/mk. We expect it to work with only minor modifications on most UNIX platforms
with IEEE arithmetics. To install visit you need at least an ANSI C compiler and a make utility.
Since the seap–server which is a necessary part of visit is implemented in Perl 5, you need access to
at least one machine with Perl 5. Some of the included tools and examples will also use Perl 5.005
with Perl/Tk 800, others use C++ or AVS/Express. However, these tools are not required for using
visit.

9.2 Quick Installation

For a first shot, try the following. Unpack the distribution in a directory you have write access to:

gunzip -c visit-1.0.tgz | tar xf -

Change directory to the just unpacked source distribution and run configure:

cd visit-1.0
./configure --prefix=/tmp/visit

With the prefix parameter you may specify the installation directory. We suggest, that you use a
directory which is exclusively for visit, because visit will spread into a couple of subdirectories
during installation and you will have less trouble removing or updating visit if it does not mix with
other software. If you omit --prefix visit will be installed in /usr/local/visit.

Build and install visit:

make
make install

Don’t try to just type make install, the perl bindings will not be generated properly!

visit and seap are now installed. Before you can use them, you need to configure and start a seap–
server. Decide, on which machine you want to run the seap–server. On this machine, you need a
working Perl 5 installation. For our tests we have used perl 5.005 02, but we expect the server to
work with any Perl 5.x. For testing, you may use your own userid on your workstation, on the long
term we suggest to use a separate account on a machine with high availability.

63

64 CHAPTER 9. INSTALLATION AND PORTING

On the choosen machine, create a config–file for the seap–server. The syntax of the config–file is
described in more detail in 6.1. The file basically looks like this:

seap_port : 4711 # an arbitrary port > 1000
seap_pidfile : /tmp/seap_srv.pid # remembers the PID
seap_passwd : my_passwd # the master password
seap_debug : 0 # 1 for extensive stdout-logging

Start the seap–server:

seap_server -f <config-file>

where <config-file> is the full path of your config–file. The default location of the config-file
is $HOME/.seapserverrc . If you place it there, you may omit the -f-parameter.

In your visit–installation, edit the file <prefix>/etc/visitrc , where prefix is the param-
eter you gave to configure.

seap_server : seapsrv.mydomain.com # your seap_server
seap_port : 4711 # port of seap_server

These are the system–defaults. If a file .visitrc exists in a users home–directory, values therein
override those in <prefix>/etc/visitrc.

At this time the installation of visit is completed. You should now compile and run the demo
programs in order to verify that your installation was successful.

9.3 Test the installation

Before you can test visit, you have to complete the installation (see previous section), because the
demos expect the include–files and libraries to be in the proper locations in <prefix>.

Change directory to demo/test . All of the test programs and Makefiles are located there. Start
with testing your seap installation. Build the seap demo–client sclient :

make sclient

Register a service at the seap–server:

./sclient -p test_service test_key test_host 99

where test_service, test_key, test_host can be any strings and 99 any number. If
the program finishes quietly, everything is ok. If you get something like

_seap_get_server: failed to read ’seap_server’ from rc-file

your visitrc file has a wrong syntax or could not be found. If you get something like

seap_publish connect to ’seapsrv:4711’: Connection refused

either your seap–server is not running or the entries in your visitrc file are wrong.

Query the just registerd service:

./sclient -q test_service test_key

The answer should be:

9.4. CONFIGURE OPTIONS 65

host = ’test_host’, port = 99

Unregister the service:

./sclient -d test_service test_key

The program should finish quietly. If you query the service again, the answer should be

query failed

See section 6.3 for a detailed description of sclient. If everything looks fine until here, your
seap–installation seems to work properly and you may start to test visit with a trivial pair of client
and server:

make vserv vclient

First start vserv and then vclient in a different window (or fvclient, if you have a Fortran
compiler) and watch them exchange data. Both programs will print information messages on the
screen. The client should exit after a few messages. The server will complain about a broken pipe
and then wait for a new connection. You may start the client again to repeat that. If the server is
running on a machine that does not support all the data types sent by the client, it will complain and
disconnect the client.

For this example to work, the seap_server must be running. If you have installed the perl
bindings (default, if you have perl5) you can substitute either vserv or vclient or both with
vserv.pl or vclient.pl . To use the perl scripts, you have to set the environment variable
PERL5LIB so that perl can find the visit modules. You may source the script visit_perl5lib
to do so:

. <prefix>/bin/visit_perl5lib

where <prefix> is the the value specified to configure. If anything goes wrong, take a look at the
next section. Configure has a couple of optional parameters that may help. For more tests, look at
the other demo programs, which are described in chapter 8.

9.4 Configure options

Configure tries to guess what your system looks like, which compilers and tools are present and
from that information creates Makefiles and other files needed for proper compilation and installa-
tion of visit. Configure is completely non–interactive, but has a couple of command–line options,
that influence its behaviour. Also certain variables will also be used if set.

visit contains certain optional parts and features. By default, configure will build everything that
it believes is possible on your system. E.g. it will build Fortran–bindings, when it finds a Fortran
compiler. What follows is a list of parameters and variables (with the default value in braces) and a
short description of the way they work.

--prefix=<prefix> [/usr/local/visit]

the top–level installation directory for visit.

--with-perl=<yes|no|visit|perl>
--with-perl (same as yes)
--without-perl (same as no)

Configures the perl–bindings of visit. If not given, the perl–bindings are build, if and only if your
PATH contains a perl (version 5.x) interpreter. If you select no, no perl–bindungs are build.

66 CHAPTER 9. INSTALLATION AND PORTING

By default, or when you select either yes or visit the perl modules will be installed in
<prefix>/lib/perl5/.... In that case users must set the environment variable PERL5LIB
in order to use them. For that purpose a script named visit_perl5lib is automagically created
and installed in <prefix>/bin. Users have to source that script. Too avoid this, you may select
--with-perl=perl. In that case, the modules will be installed in the same directories perl uses.

Configure will stop with an error message, if you request the perl–bindings to be build and perl is
not available.

--with-seapperl=<yes|no|visit|perl>
--with-seapperl (same as yes)
--without-seapperl (same as no)

Configures seap. If not given, the seap–server and the perl–bindings for seap will be build, if and
only if a perl (version 5.x) interpreter is found. This is separated from the perl–bindings of visit,
because you need a seap–server on at least one machine, but can do without visit’s perl–bindings.

The installation directories are selected as with --with-perl. If you don’t specify it explicitely
(with perl or visit) it will use the same as given for --with-perl, (and vice versa).

--with-copt=<options> [-O]

options, that are passed to the C compiler. As the name suggests, it is intended for optimization
options, but can of course be used for other type of options, too.

--with-fopt=<options> [-O]

options, that are passed to the Fortran compiler. As the name suggests, it is intended for optimization
options, but can of course be used for other type of options, too.

--with-debug

If given, all sources will be compiled with -DDEBUG, which will lead to exhaustive debugging
output. Additionally, the compiler options are changed to -g.

--with-swig

This option is for porters/developers only. Swig is a tool that supports the creation modules for perl
and other scripting languages like tcl and python. You only need it, if you want to change the core
of the perl–bindings (the file visit_perl/VisitRaw.i).

--with-blocking

The ability of visit to time out TCP/IP communication partners that don’t respond or respond to
slowly relys on non–blocking sockets. Therefore sockets are opened non–blocking per default. On
the Cray T3E, we experienced infrequent crashes of non–blocking visit-sockets in Fortran. If you
want to use the Fortran bindings on the T3E or experience similar problems on other platforms, you
may specify the option --with-blocking. It compiles the visit client functions to use blocking
sockets. This means that your simulation will never time out a visualization that hangs. However,
if the simulation terminates or crashes, your simulation will shut down the connection properly.

--help

The configure–script itself is created by the gnu–tool autoconf from a file named
configure.in . Besides the options listed above there are a couple of other generic options,
which you might find more or less useful. With this option you get a comprehensive list of them.

CC, F77, PERL5, SWIG, CPP, INSTALL

Explicitly set the compilers and tools you want to use. This is particularly useful if you have several
C or Fortran compilers installed and don’t like the one that configure selects by default, e.g:

9.5. PORTING HINTS 67

CC=xlc F77=xlf ./configure

There are lots of other variables (like CFLAGS, FFLAGS, LIBS) that might be useful. Check
the autoconf documentation or look into the configure script.

9.5 Porting hints

The configure script that is part of the visit–distribution tries to detect a couple of things that may
differ bewteen platforms and modify Makefiles and part of the sources to overcome these differ-
ences. The current script only looks at things that are relevant for machines that we have access
to. If you have other platforms, it may be neccessary to add new tests. The configure script is
automatically generated by the GNU autoconf utility, so please edit configure.in if required.
The next two sections treat the problems of Fortran support and data representations which will
most probably be an issue. On more exotic UNIX variants, you may also experience problems with
socket options and header–files.

If you experience any ploblems we would like to hear from you, not matter whether you have solved
it yourself or not.

9.5.1 Fortran issues

Unfortunately, there is no standard for mixed language programming between C and Fortran 77.
Most of the problems arise with the naming conventions of symbols and the passing of string pa-
rameters to a Fortran subroutine. While C functions generate a symbol of the same name a Fortran
function MYDEAR may appear as mydear, MYDEAR _mydear, MYDEAR_, ... or what-
ever you can think of. This may even vary between Fortran compilers on the same machine. The
configure script tests for a couple of common cases and modifies the file visitf.c which con-
tains the Fortran bindings accordingly. Be aware, that this means that if you have configured visit
with a certain Fortran compiler, the bindings may not work with an other compiler on the same ma-
chine! If your compiler generates symbols that are not recognized by configure you may be forced
to extend the test and edit visitf.c.

Another typical problem is the handling of function parameters of type CHARACTER. Many com-
pilers implicitly add the declared length of the variable to the parameter list. On SGI/CRAY systems
a CHARACTER variable is represented by a structure named _fcd. Configure only supports these
two cases.

9.5.2 Data types on new platforms

On paltforms with IEEE arithmetices, the representation of numerical data types only differs by
size and byte order. The latter case is handled by visit at runtime. For the sizes, visit provides only
support for integer types. visit uses 16 and 32 bit integers and configure typedefs the appropriate
C types to vint16 and vint32. The macro HAS_VINT16 is defined if and only if a 16 bit
integer type exists. The current version of visit generally assumes that a double (and a Fortran
DOUBLE PRECISION) have 64 bits. This is hard–coded at several places and will be changed in
a later release.

9.5.3 Defining new data types

visit supports only a limited number of data types (see 2.5) and has no mechanism for defining new
types on the application level. However, it is quite simple to define new types by modifying the
library itself. In total, there are five files to modify (or three, if don’t need the perl–bindings):

68 CHAPTER 9. INSTALLATION AND PORTING

1. define it in visit.h

2. modify the visit_sizeof function in visit.c to return the correct size of the new
datatype.

3. modify the _visit_srv_convert funtion in visit_srv.c.

4. modify the functions _name2vtype and _vtype2name in Visit.pm

5. define it in VisitRaw.i and modify the functions _visit_AV2data and
_visit_data2AV in the same file.

E.g. assume, you want to add a 32–bit float value. Then you would do the following:

1. add a line:

#define VISIT_FLOAT32 6 /* any unused positive value */

to visit.h

2. edit the function visit_sizeof in visit.c by adding an extra case to the switch state-
ment. This should set size to the number of bytes of the new datatype.

case VISIT_FLOAT32:
size = 4;
break;

3. edit the function _visit_srv_convert funtion in visit_srv.c by adding a case to
the switch statement. This should define the conversion that is required between machines of
different endianess for the new datatype.

case VISIT_FLOAT32:
ctoh32arr(data, size / visit_sizeof(VISIT_FLOAT32),

aflag);
break;

4. edit the file Visit.pm. In the function_name2vtype add a line:

$vtype = $VisitRaw::VISIT_FLOAT32 if($name eq ’FLOAT32’);

In the function _vtype2name add a line:

$name = ’FLOAT32’ if($vtype == $VisitRaw::VISIT_FLOAT32);

These functions provide conversions between the integer representation of the data type in
the C implementation and the string representation used by the perl–bindings.

5. repeat the define–directive from visit.h in VisitRaw.i

#define VISIT_FLOAT32 6 /* same value as in visit.h */

and modify the functions _visit_AV2data and _visit_data2AV. These functions
convert Perl arrays of the data type to C arrays and back. In _visit_AV2data you would
add a new case to the switch on vtype:

case VISIT_FLOAT32:
{
float *fp = Cdata;
for(i=0; i<n; i++) {
tv = av_fetch(AVdata, i, 0);
fp[i] = SvNV(*tv);

}
}
break;

In _visit_data2AV it would be:

9.5. PORTING HINTS 69

case VISIT_FLOAT32:
{
float *fp = Cdata;

for(i=0; i<n; i++) {
svs[i] = sv_newmortal();
sv_setnv(svs[i], fp[i]);

}
}
break;

Note that this assumes that sizeof(float) is 4 on all of your platforms – like the current
implementation assumes that sizeof(double) is always 8.

