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Part 1
Fundamentals

1 Introduction

The development of parallel applications is still a very complex and expensive process.
This is essentially a result of the close relationship between the algorithm to be imple-
mented on the one hand and the properties of the target platform in conjunction with the
employed programming model on the other hand. Only when all three components of a
parallel solution fit together in the right way, the application is able to achieve the desired
performance.

However, the way in which these components interact is quite sophisticated and often
difficult to understand. Especially using the message passing programming model, one of
the most popular programming models on todays widespread massive parallel systems,
often results in mysterious program behavior making the creation of scalable and fast
applications a challenging task.

The complexity of current systems involves incremental performance tuning through
successive observations and code refinements. A critical step in this procedure is trans-
forming the collected data into a useful hypothesis about inefficient program behavior.
Both the kind of data available and the tools we can use to interpret the data have major
impact on the quality of our hypothesis.

We can get the most detailed view on the behavior of the parallel application by tracing
runtime events that determine its performance properties. This task can be performed by
tools like PAT [4]. Then, a performance problem can be considered as an event pattern or
compound event which has to be detected in the event trace after program termination.
The compound event is built from primitive events such as those associated with entering
a program region or sending a message. One advantage of this technique is the existence of
many powerful graphical visualization tools like VAMPIR [1] which may help to identify
the desired patterns manually. But automatically locating and classifying performance
problems would accelerate this process considerably.

The Event Analysis and Recognition Language EARL was designed to provide a basic
building block for automatic analysis of traces generated from message passing programs.
It is actually a new high-level trace analysis language allowing to easily construct new
trace analysis tools by writing scripts in the EARL language. These are then executed by
the EARL interpreter.

In the context of EARL a performance problem can be considered as an event pattern
occurring in the event trace produced by the parallel application. The EARL trace anal-
ysis language helps to easily specify an appropriate search algorithm by providing useful
abstractions allowing the algorithm to have a very simple structure even in case of complex
event patterns.

For example, one important feature of EARL is that frequently used higher-order
events such as region instances or message transfers are represented as links between their
constituent events which can easily be traversed by a search script. Furthermore, EARL
supports navigation through function call stacks and message queues at a given execution
state of the parallel program, enabling compact specification and efficient detection of the
requested compound event.
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An EARL performance analysis script usually takes one or more trace files as input.
These are automatically mapped to the EARL event trace model by the EARL interpreter,
independently of the underlying trace format, thereby allowing efficient random access to
the events recorded in the file. Currently, EARL supports the VAMPIR [1], ALOG, and
CLOG [5] trace formats.

Whereas the initial version of EARL [10] was implemented as extension of the Tcl
interpreter [9] only, the current version also allows writing EARL scripts in Perl [8] and
Python [3], so each EARL programmer can choose the scripting language that fits his
needs best and can benefit from the full range of newest scripting technology. In addition,
a redesign of the user interface resulted in a smaller set of simpler but still powerful
orthogonal commands.

The idea of embedding the EARL language in a general purpose scripting language
offers many interesting possibilities for tool design based on EARL. The multitude of pow-
erful built-in features or extensions available on the Internet, e.g. for constructing graph-
ical user interfaces, provides additional support for creating valuable performance tools.
In particular the facilities for interprocess communication allow conducting experiments
under tool control, e.g. running a parallel application with changing input parameters or
hardware configuration.

The first part of this document presents the basic concepts and gives a summary of
the language’s semantics and its implementation. The second part provides a detailed
language reference. In the last part we present three script examples to give an impression
of how to use EARL in practice.

2 The EARL Event Trace Model

Much of the power of EARL comes through its very high-level abstraction of an event
trace allowing a programmer to concentrate on the trace analysis and let EARL take care
of the different trace formats and their encoding of functions and event types, of input
handling and buffering, and of keeping track of message queues and call stacks.

The EARL event trace model defines the way an EARL programmer views an event
trace. The EARL event trace model describes event types and system states and how they
are related. An event trace is considered as a sequence of events. The events are sorted
according to their timestamp and numbered starting at 1. There are different event types.
EARL defines four predefined event types: entering (named enter), and leaving (ezit) a
region, and sending (send) as well as receiving (recv) a message. There may be more event
types defined depending on the underlying trace format or depending on a specific event
trace. A region is a named section of the traced program, e.g. it could be a loop or basic
block, but in most cases it is a function or subroutine. If supported by the trace format,
regions may be organized in groups, e.g. user or system functions.

2.1 Event Types

An event type is represented by an n-tuple of attributes. An event instance is defined by
the values assigned to these attributes. The number of attributes depends on the type of
the event.

All event types share a set of typical attributes such as a timestamp (time) or the
location (loc) where the event happened. A location can be a process, thread, or ma-
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chine, or a combination thereof !. The event type is explicitly given as a string attribute
(type). However, the most important attribute is the position (pos) of the event within
the event trace. It is needed to uniquely identify an event and is assigned according to
the chronological order of the events.

The enter and exit event types have an additional region attribute specifying the name
of the region entered or left. send and recv have attributes describing the destination
(dest), source (src), tag (tag), length (len), and communicator (com) of the message.

In addition to these four standard event types, the EARL event trace model provides
a template for event types that are not part of the basic event trace model. These types
may be types depending on a special trace file format or even types defined for a specific
event trace. Besides the five basic attributes pos, loc, time, type and enterptr the template
provides two generic attributes without predefined semantics (datal and data?2).

The concepts of region instances and messages are realized by two special attributes
(Fig. 1). The enterptr attribute which is common to all event types points to the enter
event that determines the region instance in which the event happened. In particular
enterptr links two matching enter and exit events together. Apart from that, recv events
provide an additional sendptr attribute to identify the corresponding send event. In gen-
eral, references to other events are expressed by specifying the positions of the respective
events.

The EARL event types and their attributes are summarized in Tab. 1.

enterptr
———————— ]
|
exit
exit
Loc A K
send
Loc B 7 K

: I time
—_—

sendptr

Figure 1: References provided by enterptr and sendptr

2.2 System States

For each position in the event trace, EARL also defines a system state reflecting the state
in which the system was after the event at this position took place. A system state consists
of one region stack per location and a message queue. The region stack is defined as the
set of enter events that determine the regions in which the program executes at a given
moment, and the message queue is defined as the set of send events of the messages sent
but not yet received at that time. The message queue can be partitioned according to the

'In the context of MPI the location usually represents the rank of a process in MPI_.COMM_WORLD.
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source and destination locations of each individual message. The system state as a whole
is just the union of the region stacks and the message queue.

In addition to querying theses structures directly, it is possible to navigate step-by-
step through the region stack using the enterptr attribute or to trace back messages by
following the sendptr attribute.

Table 1: The EARL event types

All types

pos Position of the event within the event trace. Positions are integer values
starting at 1

loc Location where the event happened. Locations are numbered from 0 to
n — 1 where n is the total number of locations used by the program

time Timestamp in seconds as floating point value

type Type of the event as a string value. This is either one of enter, exit,
send, recv, or the identifier of a type that is not part of the basic model

enterptr A reference (position) pointing to the enter event of the region instance
in which the program was executing at the moment just before the event
happened. If the event happened at top level, the attribute value is 0.

Entering a region (enter)
region ‘ Name of the region entered

Leaving a region (exit)
region ‘ Name of the region left

Sending a message (send)

dest Target location of the message

tag Message tag

com Communicator of the send operation
len Message length in bytes

Receiving a message (recv)

sre Source location of the message

tag Message tag

com Communicator of the receive operation
len Message length in bytes

sendptr Reference to the corresponding send event

Template for additional types
datal A generic attribute which can either have a string, an integer, or a
floating point value

data2 A generic attribute which can either have a string, an integer, or a
floating point value




3 The EARL Language

The core of EARL consists mainly of two wrapped C++ classes whose operations are
mapped to corresponding commands of the supported scripting languages. Whereas the
initial version of EARL used a hand made Tcl interface, now all interfaces are uniformly
generated by SWIG [2]. The EARL extensions follow the object-oriented style also used
by the Tk extension [9] which is available for all three languages.

The first class is named EventTrace. This class represents an event trace, i.e. a
sequence of events in chronological order. It provides a mapping of the events from a
trace file to the EARL event trace model. The second class P2Statistic can be used to
calculate quantiles of a very large number of values like the execution times of a region or
the transfer rates of messages.

3.1 EventTrace

Objects of this class are created with a trace file as input. Now, the trace file can be
accessed according to the EARL event trace model.

An event can be considered as set of (key, value) pairs, where key denotes the name
of an attribute and walue its corresponding value. A natural way of representing such
an object in a programming language would be a hash index structure h in a way that
h(key) = wvalue. All supported scripting languages provide such a structure in form of
hash values (Perl), dictionaries (Python), or arrays (Tcl).

EventTrace provides several operations for accessing events: event () returns a hash
value or a dictionary (Perl and Python) or assigns the event’s attribute values to the
elements of an array variable (Tcl). However, if you want to get a literal representation
of an event, this operation does not suffice, because it does not preserve any order of
the event attributes. Therefore, you can alternatively get a list containing the attribute
names of the event in the order specified by the EARL event trace model by calling the
attributes() operation. For convenience, the values() operation provides a list with
the attribute values in the same order.

EARL automatically calculates the state of the region stacks and the message queue
for a given event. The stack() operation returns the stack of a specified location as a
list of the positions of the corresponding enter events. The queue() operation returns
the message queue as a list of positions that point to the corresponding send events. If
only messages with a distinct source or destination location are considered, the source and
destination location can by specified as argument to the queue () operation.

All operations for processing an event can be used in two ways. Either you can specify
the position of the event explicitly or you can implicitly use the position of the iterator
by omitting the position argument. The iterator is owned by the EventTrace object and
can be used to walk sequentially through an event trace without keeping track of the
position yourself. If you want to jump back during your walk, you can do so by simply
specifying an explicit target to the respective operation. The iterator remains unchanged
and remembers your position. The iterator can be moved forward (next()), backward
(prev()), or moved to an arbitrary position (jump()).

There are also several operations to access general information about the event trace.
EARL allows to get a list of all defined event types (types()), the filename (file()) and
format (format ()) of the trace file, the number of locations used in the parallel application
(nrlocs()), and a list of all defined regions (regions()) and groups (groups()). If you
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a interested in the regions belonging to a certain group, you can supply the name of that
group as optional argument to the regions() operation. The group() operation maps
a given region to its group. It is also possible to ask for location symbols defined in the
trace file with the Locsym() operation.

3.1.1 Implementation Notes

During runtime of an EARL script the EARL interpreter dynamically builds up a sparse
index structure on the trace file. At fixed intervals important trace state information
(including the region stacks and the message queue) is stored in so-called bookmarks to
speed up random access to events. If an event 7 is requested by an EARL script, the EARL
interpreter usually does not have to start reading from the beginning of the trace file to
find it. Instead, the interpreter looks for the nearest bookmark and takes the system state
information from there which is required to correctly interpret the subsequent events from
the file. Then it starts reading the events from there until it reaches the desired event.

To gain further efficiency, EARL automatically caches the most recently processed
events in the history buffer. The history buffer always contains a contiguous subsequence
of the event trace and the system state referring to the beginning of this subsequence. So
all information related to events in the history buffer can completely generated from the
buffer including region stacks and message queues.

3.2 P2Statistic

An object of this class represents a set of numeric values, e.g. observations.

P2Statistic provides an operation add () for adding values to the data set. An operation
count () gives you the number of values added so far.

At any point, you can ask for different quantiles such as the median (med()), the 25%
(9250)) and the 75% (q75()) quantile. The quantiles are actually estimates computed
with the P? algorithm [7] which makes it unnecessary to store the complete data set.
So the size of an P2Statistic object is very small and always constant. Using the P?
algorithm is the reason for naming the class P2Statistic.

You can also request statistical standard information like the mean value (mean()),
extreme values (min(), max()), the sum (sum()), and the variance (var()) of the values
in the data set.



Part 11
Language Reference

This part contains a detailed description of the EARL language. It is assumed that the
reader is already familiar with the syntax of the scripting language she or he intends to
use. Please consult the corresponding language manuals.

For each class and operation we first give a short description, explain the arguments if
necessary, and then describe how the operation is used in each of the supported scripting
languages. For each language mapping we illustrate the usage with a short code sequence.

4 EventTrace

e Life Cycle Management

— Object creation: EventTrace()

— Object deletion: See section 6
e Operations

— Event Access

*+ Get an event: event()
* Attribute names: attributes()
* Attribute values: values()

State Access

+* Region stack: stack()
x Message queue: queue ()
— Iterator Control
* Jump to a position: jump()
* Move forward: next ()
* Move backward: prev()
x Reinitialization: reset()
— Miscellaneous

x Name of the trace file: £ile()
* Trace format: format()

* Group of a region: group()

x Groups of program regions: groups()
* Location symbol: locsym()

*x Number of locations: nrlocs()

* Program regions: regions ()

+ Event types: types()
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4.1 Object Creation
EventTrace()

Creates an EventTrace object from a trace file which has to be specified as input parameter.

Arguments

handle (Tcl only)
Name of the command used to represent the object

file Name of the trace file

format (optional)
Format of the trace file. Currently this may be one of alog, clog, or vampir
(default)

bdist (optional)
Distance between indexed positions (bookmarks) within the trace file (default
10000)

hsize (optional)
Size of the history buffer in events (default 1000)

Perl

Arguments are specified in hash initializer syntax. All keys except for file can be omitted.
The created object is returned.

$e = new EventTrace(file => "filename",
format => "vampir",
bdist => 10000,
hsize => 1000);

Python

All arguments except for file can be omitted. The created object is returned. (The
example is shown in keyword argument syntax. Normal syntax is also possible with the
arguments supplied in the order given below.)

e = EventTrace(file = "filename",
format = "vampir",
bdist = 10000,
hsize = 1000)

Tecl
Only the -file switch is required. The handle name e is returned.

EventTrace e -file filename \
-format vampir \
-bdist 10000 \
-hsize 1000
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4.2 Event Access
event()

Gets an event from a trace file. The event is considered as a list of (key, value) pairs, where
key is the name of an event attribute and value is the corresponding attribute value. The
event is returned as a hash index structure h where h(key) contains the corresponding
value. The position of the requested event is supplied as argument. If the event does not
exist, an exception is thrown. If the event position is omitted, the event at the current
iterator position is chosen.

Arguments

arr (Tcl only)
Name of the array variable to which the event is assigned

pos (optional)
Position of the requested event.

Perl

The event is returned as a reference to a hash value.

$h = $e->event(102);
$time = $$h{"time"};

# or

%h = %{$e->event (102)7};
$time = $h{"time"};

Python

The event is returned as a dictionary.

d = e.event (102)
time = d["time"]

Tcl

In Tecl complete arrays cannot be assigned to a variable. Instead, only scalar values can
be assigned to individual elements of an array variable. Therefore, the name of the array
variable to which the attribute values of the event are assigned has to be supplied as first
argument. The position of the event is returned.

e event a 102
set time $a(time)
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attributes()

Returns the attribute names of an event. The position of the requested event is supplied as
argument. The attribute names are returned in the same order in which they are defined
in the introductory part. If the event does not exist, an exception is thrown. If the event
position is omitted, the event at the current iterator position is chosen.

Arguments

pos (optional)
Position of the requested event.

Perl

Returns a reference to an array containing the attribute names.

$a = e—>attributes();
print(@$a);

Python

Returns a list containing the attribute names.

a = e.attributes()
print a

Tcl

Returns a list containing the attribute names.

set a [e attributes]
puts $a

values()

Returns the attribute values of an event. The position of the requested event is supplied
as argument. The values are returned in the same order in which they are defined in the
introductory part and which is also used by the attributes() operation. If the event
does not exist, an exception is thrown. If the event position is omitted, the event at the
current iterator position is chosen.

Arguments

pos (optional)
Position of the requested event
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Perl

Returns a reference to an array containing the attribute values.

$v = e->values();
print (Q$v) ;

Python

Returns a list containing the attribute values.

v = e.values()
print v

Tcl

Returns a list containing the attribute values.

set v [e values]
puts $v

4.3 State Access
stack()

Returns the region stack state at the time immediately after the event with the supplied
position. If the position is omitted, the stack state refers to the current iterator position.
The stack state can be queried for each location. stack() returns a list of positions
pointing to enter events. These enter events mark the beginning of the region instances
in which the program is executing at that moment. The returned positions are sorted in
ascending order, that means, the most enclosing region comes last.

In contrast to the event () operation, specifying 0 as position parameter is valid. In
this case the result is an empty list.

Arguments

loc The location for which the stack state is requested

pos (optional)
The position within the trace for which the stack state is requested

Perl

The stack is returned as a reference to an array containing the event positions.

$s = e->stack(1,102);
print (@$s) ;
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Python
The stack is returned as a list containing the event positions.

s = e.stack(1,102)
print s

Tcl

The stack is returned as a list containing the event positions.

set s [e stack 1 102]
puts $s

queue()

Returns the state of the message queue at the time immediately after the event with the
supplied position. If the position is omitted, the queue state refers to the current iterator
position. The state of the message queue can be queried for each combination of source
and destination location. queue() returns a list of positions pointing to send events by
which the messages waiting in the queue have been sent. "Waiting in the queue’ means sent
but not received yet. The returned positions are sorted in ascending order, that means,
the oldest send event comes first.

In contrast to the event () operation, specifying 0 as position parameter is valid. In
this case the result is an empty list.

Arguments

src The source location of the messages. If you want to consider messages from all
possible locations, you can set src to —1.

dest The destination location of the messages. If you want to consider messages to
all possible locations, you can set dest to —1.

pos (optional)
The position to which the requested queue state refers.

Perl

The queue is returned as a reference to an array containing the event positions.

$q = e->queue(1,2,102);

print (@$q) ;

$q = e->queue(-1,-1,102); # all messages currently underway
print (@$q) ;
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Python

The queue is returned as a list containing the event positions.

q = e.queue(1,2,102)
print q

g = e.queue(-1,-1,102)
print q

Tcl

The queue is returned as a list containing the event positions.

set q [e queue 1 2 102]
puts $q

set q [e queue -1 -1 102]
puts $q

4.4 Tterator Control
jump()

Moves the iterator to the position supplied as argument. The new position is returned.
Only positions greater than 0 are valid targets of jump (). If the new position is not valid,
0 is returned and the iterator remains unchanged. So you can use jump() as a predicate
to test if there is an event with the supplied position.

The initial position of the iterator is 0. Note that you cannot get an event with position
0, so jumping to this position would fail. But querying the system state relative to this
position is valid, although the result would not be very interesting. To restore the initial
position use reset ().

Arguments
pos Position where to jump to.
Perl

$e->jump (102) ;
$h = e->event();

Python

e.jump(102)
d = e.event()
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Tcl

e jump 102
e event a
next ()

Increments the iterator by 1. If the new position is not valid, 0 is returned and the iterator
remains unchanged. So you can use next () as a predicate to test if a next position (event)
does exist.

Perl

$e—>next () ;
$h = e->event();

Python

e.next ()
d = e.event()

Tcl

e next
e event a

prev()

Decrements the iterator by 1. If the new position is not valid, 0 is returned and the iterator
remains unchanged. So you can use prev() as a predicate to test if a previous position
(event) does exist. Note that you can only reach positions with valid events by calling this
operation. The zero position can only be reached by reset(). Otherwise, prev() could
not be used as a predicate for testing valid event positions.

Perl

$e->prev();
$h = e->event();

Python

e.prev()
d = e.event()

Tcl

e prev
e event a
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reset ()

Resets the iterator to 0.

Perl

e->reset();

Python

e.reset()

Tcl

e reset

4.5 Miscellaneous
file()

Returns the name of the trace file.

Perl

$f = e—>file();

Python

f =e.file()

Tcl

set f [e file]

format()
Returns the name of the format of the trace file. This is currently one of alog, clog or

vampir.

Perl

$f = e->format();

Python

f = e.format()
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Tcl

set f [e format]

group()

Returns the name of the group to which a given region belongs.

Arguments

region The region of which you want to know the group

Perl

$g = e->group("MPI_Send") ;

4 EVENTTRACE

Python

g = e.group("MPI_Send")

Tcl

set g [e group MPI_Send]

groups|()

Returns all groups of regions defined in the trace file.

Perl

Returns a reference to an array containing the group names.

$g = e->groupsQ);
print (@$g) ;

Python

Returns a list containing the group names.

g = e.groups()
print g

Tcl

Returns a list containing the group names.

set g [e groups]
puts $g
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locsym()

Returns the symbol for a given location defined in the trace file. If there is no symbol
defined, the location number is returned.

Arguments
loc The location for which you want to get the symbol.
Perl

$1 = e->locsym(1);

Python

1 = e.locsym(1)

Tcl

set 1 [e locsym 1]

nrlocs()

Returns the number of locations used to run the parallel program.

Perl

$n = e->nrlocs();

Python

n = e.nrlocs()

Tcl

set n [e nrlocs]

regions()

Returns the names of the program regions defined in the trace file. If you only want to
know the regions of a certain group, you can specify this group as optional argument.

Arguments

group (optional)
The group of which you want to know the regions
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Perl

Returns a reference to an array containing the region names.

$all = e->regions();
print(@$all);

$mpi = e->regions("MPI");
print (@$mpi) ;

4 EVENTTRACE

Python

Returns a list containing the region names.

all = e.regions()
print all

mpi = e.regions("MPI")
print mpi

Tcl

Returns a list containing the region names.

set all [e regions]
puts $all

set mpi [e regions MPI]
puts $mpi

types()

Returns the event types defined for the trace file. Usually, these are the standard event
types (enter, exit, send, recv) and additional trace file or trace format specific event types.

Perl

Returns a reference to an array containing the event type names.

$t = e->eventTypes();
print (@$t) ;

Python

Returns a list containing the event type names.

t = e.eventTypes()
print t
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Tcl

Returns a list containing the event type names.

set t [e types]
puts $t

5 P2Statistic

e Life Cycle

— Object Creation:

— Object Destruction: See section 6
e Operations

— Managing the data set
x Add a value to the data set: add ()
x Cardinality of the data set: count()
* Reinitialization: reset ()
x Get a literal representation: state()
— Quantiles

* 25% quantile: q25()

x Median: med ()

x 75% quantile: q75()
— Miscellaneous

% Minimum: min ()

* Maximum: max ()

* Mean value: mean()

* Sum: sum()

* Variance: var ()
5.1 Object Creation

P2Statistic()

Creates a P2Statistic object. If you want, you can initialize the object with another
object by providing its literal representation as constructor argument. You get the literal
representation of a P2Statistic object by calling the state() operation.
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Arguments
handle (Tcl only)

Name of the command used to represent the object

state (optional)
A list containing the values which define the state of the source object

Perl

The created object is returned.

$p = new P2Statistic();
$q = new P2Statistic($p->state()); # q is copy of p
Python

The created object is returned.

p = P2Statistic()
q = P2Statistic(p.state()) # q is copy of p
Tcl

The handle name p resp. q is returned.

P2Statistic p
P2Statistic q [p state] ; # q is copy of p

5.2 Managing the Data Set
add()

Adds a numeric value to the data set.

Arguments

value  The floating point value to be added to the data set

Perl
p->add(3.1415);

Python
p.add(3.1415)
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Tcl
p add 3.1415

count|()

Returns the cardinality of the data set, i.e. the number of values added so far.

Perl

$c = $p—>count O ;

Python

c = p.count()

Tcl

set ¢ [p countl]

reset ()

Reinitializes the object. After applying this operation the data set is empty again.

Perl

p—>reset();

Python

p-reset()

Tcl

p reset

state()

Returns the literal representation (state) of the object as list of numeric values. The list
can be stored e.g. in a file and can later be used as constructor argument to recreate the
object.

Perl

Returns a reference to an array containing the values which represent the object state.

$s = p->state();
print (@$s);
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Python

Returns a list containing the values which represent the object state.

s = p.state()
print s

Tcl

Returns a list containing the values which represent the object state.

set s [p state]
puts $s

5.3 Quantiles
q25()

Returns the 25% quantile of the data set. The return value is an estimate computed with
the P? algorithm. Requires at least five elements in the data set.

Perl
q = p—>9250);

Python

q =p.q9250

Tcl

set q [p g25]

med ()

Returns the median of the data set. The return value is an estimate computed with the
P? algorithm. Requires at least five elements in the data set.

Perl

m = p->med();

Python

m = p.med()
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Tcl

set m [p med]

q75()

Returns the 75% quantile of the data set. The return value is an estimate computed with
the P? algorithm. Requires at least five elements in the data set.

Perl

q = p—>q750);

Python

q =p.q750

Tcl

set q [p q75]

5.4 Miscellaneous
min()

Returns the minimum of the data set. This operation requires at least one element in the
data set.

Perl

$m = p->min();

Python

m = p.min()

Tcl

set m [p min]

max|()

Returns the maximum of the data set. This operation requires at least one element in the
data set.

Perl

$m = p->max();
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Python

m = p.max()

Tcl

set m [p max]

mean()

Returns the mean value of the data set. This operation requires at least one element in
the data set.

Perl

$m = p->mean();

Python

m = p.mean()

Tcl

set m [p mean]

sum()

Returns the sum of the elements in the data set. This operation requires at least one
element in the data set.

Perl

$s = p—>sumQ);

Python

s = p.sum()

Tcl

set s [p sum]

var()

Returns the variance of the elements in the data set. This operation requires at least one
element in the data set.
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Perl

$v = p->var(Q;

Python

v = p.var()

Tcl

set v [p var]

6 Object Destruction

Deleting an object of an EARL class in the scripting language also calls the destructor of
the corresponding C++ class and releases all allocated resources.

Perl

Normally, if the program is running out of the scope in which the variable holding the
EARL object is defined, the object is deleted if no other reference to the object exists.
Because of the way in which the Perl garbage collection interacts with wrapped C++
classes, it is recommended to explicitly release the object by assigning undef to the variable
holding the object.

$e = SomeEarlClass(...);
# some code
$e = undef;

Python

Here nothing special needs to be considered. The EARL classes provide the usual destruc-
tor operation del.

e = SomeEarlClass(...)
# some code
del e

Tcl

Since EARL objects are represented by Tcl procedures, they can be deleted with rename.
This also frees all allocated resources.

SomeEarlClass e ...
# some code
rename e {}
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Part 111
Examples

This part of the document describes three EARL script examples. Each of them is generic
in the sense that it can be used with any message passing trace supported by EARL.
Although simple (all are around 20 lines of code) they perform quite complex calculations.
The simplicity comes from the abstractions defined in the EARL event trace model and
the high-level nature of the scripting languages used.

Each example is written in another scripting language. This should help to understand
how EARL is mapped to each of the supported languages.

e Compute Wasted Time of MPI_Recv (Perl)
e Passing Messages out of Order (Python)

e Region Statistics (Tcl)

7 Compute Wasted Time of MPI_Recv (Perl)

The first example demonstrates the capabilities of EARL to solve nonstandard prob-
lems, especially recognizing complex event patterns. Consider the following: For a set of
event traces from a parallel MPI program, determine the time which is wasted when an
MPI_Recv is posted before the corresponding MPI_Send was executed (see Fig. 2).

enterptr
=
v |
enter MP1_Send
time
Loc A
Loc B %7
: I
---------- recv
enter MPI_Recv sendptr I
t _________________ j enterptr

Figure 2: Wasted time in message passing programs

The complete EARL script is depicted in Fig. 3 2. Line 1 is a special comment which
tells a Unix system which command to use to execute the following script file. Line 2 loads
the earl module. Line 4 opens the trace file which is specified by the first command line
parameter SARGV/[0] and stores the created EventTrace object in variable $e. The while

2The line numbers are not part of the source code.
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1: #!/usr/local/bin/perl

2: use earl;

3:

4: $e = new EventTrace(file => $ARGV[0]);

5:

6: $sum_wasted = O;

T:

8: while ($e->next())

9: {

10: Y%ecurr = %{$e->event()};

11: if ($curr{"type"} eq "recv") {

12:

13: %hrecv_start = %{$e->event ($curr{"enterptr"})};
14: next unless ($recv_start{"region"} eq "MPI_Recv")
15:

16+ Ysend = %{$e->event ($curr{"sendptr"})};

17: %send_start = %{$e->event ($send{"enterptr"})};
18: next unless ($send_start{"region"} eq "MPI_Send")
19:
20: $wasted = $send_start{"time"} - $recv_start{"time"};
21: if ($wasted > 0) {
22: $sum_wasted += $wasted;
23: +
24: }
25: }
26: print($e->file(),": ",$sum_wasted, " sec wasted.\n");

27: $e = undef

Figure 3: Compute Wasted Time of MPI_Recv

in line 8 steps sequentially through the event trace, in each iteration moving the iterator
forward by one position. In line 10 the event at the current iterator position is assigned
to the hash %curr. If we find a recv event (line 11), we fill the hash %recv_start with
the enter event of the enclosing region instance (line 13). If the enclosing region is not
MPI_Recv (the message could have been sent from another routine, e.g., MPI_Broadcast),
we skip the rest of the loop and continue the search (line 14). Next, we set hash %send
to the corresponding send event (line 17), and again check whether it originated from an
MPI_Send (line 18). We compute the difference between the beginning of MPI_Send and
MPI_Recv (line 20) and add it to the variable $sum_wasted if MPI_Recv was executed
before MPI_Send (line 22). Finally, we print the result (line 26) and close the trace file
(line 29) by assigning undef to the variable holding the EventTrace object.



30 8 PASSING MESSAGES OUT OF ORDER (PYTHON)

= WAMFIF AN
mb—: Elobal Tl-rilim
E0a, 0 my 10080, 11 g 1.5 2.0n - LT
: ' ! ]
! ERERIER
f il i il il BN
: : : : : [

Figure 4: Passing messages out of order

8 Passing Messages out of Order (Python)

The second example demonstrates how EARL can be used to find programming errors in
message passing programs. The example is taken from the Grindstone test suite for parallel
performance tools [6] and highlights the problem of passing messages out-of-order. This
problem could arise if one process is expecting messages in a certain order, but another
process is sending messages which are not in the expected order. In Fig. 3 an extreme
example is shown: In the left part of the picture Node 1 is processing incoming messages
in the opposite order they were sent from Node 0. Processing them in the order they were
sent would not only speed up the program but also requires much less buffer space for
storing unprocessed messages. This is shown in the right part of the picture.

The EARL code for this example is quite simple. We open the trace file specified as
first command line parameter (line 5) and sequentially loop through the events of the trace
(line 7). If we find a recv event (line 10), we check for all messages still in the message
queue sent to the current location from the same source location as the current message
(line 12), whether the corresponding send event happened before the send event of the
current message (line 14). As we only have to determine the order of these events in time
and EARL provides references to other events by their positions, the necessary comparison
can be done by comparing the references since the positions comply with the chronological
order. If we find such an outstanding message, an error message is printed (line 15).
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1: #!/usr/local/bin/python

2: from earl import *

3: from sys import *

4:

5: e = EventTrace(file=argv[1])

6:

7: while e.next():

8:

9: curr = e.event()

10: if curr["type"] == "recv"

11:

12: for send in e.queue(curr["src"], curr["loc"])
13:

14: if (send < curr["sendptr"])

15: print "Received message in wrong order"
16:

17: del e

Figure 5: Passing messages out of order

9 Region Statistics (Tcl)

The third problem is the standard task of computing the time which is spent in each region
of the program including and excluding the time spent in contained region instances (Fig.
6).

Line 2 indicates which package is required for understanding the following lines. Line
4 opens a trace file which is given the script as first command line parameter. Now, the
trace is represented by a Tcl command named e. Next, we get the number of locations
used (line 6) and a list of all regions defined (line 8). Then we iterate over all locations and
regions (lines 9 to 14) to initialize the two arrays incl and excl, where for each location
we will store the total inclusive and exclusive time spent in each region.

The while in line 14 steps sequentially through the event trace setting the array curr
to the next event. If we find an exit event (line 16), we fill the array enter with the
corresponding enter event of the region we are about to leave (line 17). In line 18 we
calculate the time spent in this region. In lines 20 and 21, we add this time to the
corresponding values in the arrays incl and excl. Here we use the auxiliary variable
index as key which we have computed in line 19. Lines 22 to 25 subtract the execution
time of the current region instance from the total exclusive execution time of the enclosing
region (if there is one). In order to find it, we use the enterptr attribute of the enter event
which should point to the beginning of the enclosing region instance. If enterptr is not 0
there is an enclosing region instance, and we can perform the subtraction.

After finishing the while loop the arrays incl and excl contain the desired information
which now can be printed or displayed using bar graphs or pie charts.
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#!/usr/bin/tclsh8.0

: package require earl
: EventTrace e -file [lindex $argv 0]
: set n [e nrlocs]

: foreach r [e regions] {

for {set i 0} {$i < $n} {incr i} {

: )

set excl($i,$r) O
set incl($i,$r) O
}
: while {[e next]} {

e event curr
if {$curr(type) == "exit"} {
e event enter $curr(enterptr)

9 REGION STATISTICS (TCL)

set diff [expr $curr(time) - $enter(time)]
set index "$curr(loc),$curr(region)"

set incl($index) [expr $incl($index) + $diff]
set excl($index) [expr $excl($index) + $diff]

if {$enter(enterptr)} {

e event encl $enter(enterptr)

set excl($curr(loc),$encl(region)) \
[expr $excl($curr(loc),$encl(region)) - $diff]

: o}
: # print results here
: rename e {}

Figure 6: Region statistics
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