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Abstract

Event traces provide a very �ne grained view on the performance behavior of a parallel
application. Based on this view, performance properties which cannot be represented by
pro�ling data can be described in terms of compound runtime events. In many cases, a
compound runtime event indicating the existence of a performance property exhibits a
quite complex structure. Most of the relationships by which its constituents are intercon-
nected depend on a speci�c programming model which makes it di�cult to capture all
such situations by means of one general representation method.

To overcome this problem, we present a generic technique for de�ning programming model
speci�c abstractions allowing a simple description of compound runtime events in the
context of that programming model. In addition, we show that this approach can be
easily integrated into the APART speci�cation language and propose appropriate language
extensions.
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1 Motivation

1.1 Introduction

The development of parallel applications is still a very complex and expensive process.
This is essentially a result of the close relationship between the algorithm to be imple-
mented on the one hand and the properties of the target platform in conjunction with the
employed programming model on the other hand. Only when all three components of a
parallel solution �t together in the right way, the application is able to achieve the desired
performance.

The complexity of current systems involves incremental performance tuning through suc-
cessive observations and code re�nements. A critical step in this procedure is deriving
the performance properties of a parallel application from the collected performance data.
This is necessary in order to yield a useful statement about ine�cient program behavior.

A performance property characterizes a speci�c performance behavior. Both the kind of
data available and the tools we can use to interpret the data have a major impact on the
informative value of the performance properties that can be proven based on this data.

In many cases, summary information collected by pro�ling tools is su�cient to build a
useful statement. However, there are performance properties which are not visible in
this kind of information. A much more detailed view on the behavior of the parallel
application can be gained by event tracing. That means, we record those events during
runtime that determine the performance properties of the application. Then, the presence
of a performance property can be proven by the occurrence of a compound runtime event
(CRE) which has to be detected in the event trace after program termination. A CRE
is built from primitive events such as those associated with entering a program region or
sending a message. A CRE can also be regarded as an event pattern which can be found
by applying pattern matching algorithms. An additional advantage of this technique is
the existence of many powerful graphical visualization tools like VAMPIR [1] which may
help to identify the desired CREs manually. But automatically locating and classifying
performance properties would accelerate this process considerably.

Currently, we are investigating methods for specifying CREs that represent performance
properties of parallel applications. These speci�cations should be used by human tool
builders or even generators as a basis for a new kind of automatic performance tools which
are able to identify and assess the speci�ed performance properties in a parallel application
without user intervention. An alternative approach would be to use the speci�cations as
input for a generic tool capable of handling an arbitrary set of CREs. The latter method
was adopted in the �eld of MPI applications by the EXPERT tool architecture [14].

However, CREs indicating the existence of certain performance properties are quite com-
plex and di�cult to formalize. For this reason, we present a generic technique leading to
simple speci�cations of CREs produced by parallel and distributed applications. The es-
sential ideas used here are strongly in
uenced by the experiences gained during the design
of the EARL trace analysis language [13].

1.2 Compound Runtime Events

A CRE representing a performance property is a set of primitive events. A primitive event
corresponds to a single record from the event trace. The primitive events a CRE comprises
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are called its constituents. There are various relationships between the constituents of
a CRE. Some of which are temporal, but mostly they are relationships depending on
the employed programming model. For instance, sending a message and receiving it are
interconnected by a relationship which is derived from the message passing programming
model. Of course, these relationships may include in their de�nitions temporal aspects,
as well.

Another observation is that CREs through which performance properties become manifest
exhibit some form of locality within the event trace. Usually the constituents of such a
CRE share some context which refers to the execution state of the system or the program
at the time when the CRE occurs. This means that in most cases the constituents refer
to the same set of ongoing activities of the program in contrast to activities which already
belong to the execution history. An example for such a system state is e.g. the set of
messages being in transfer at a given moment. However, the nature of such system states
again depends on the programming model used.

For this reason, it is di�cult to devise a formal representation of CREs which is general
enough to cover all possible programming models on the one hand and which is powerful
enough to express quite complex and speci�c CREs on the other hand.

Instead, it would be desirable to provide for each programming model appropriate abstrac-
tions which could be used to keep the CRE descriptions as simple as possible. However,
to alleviate the loss of generality introduced by model speci�c description methods we
propose a generic technique for creating such abstractions.

1.3 Outline

In section two we explain how current tracing environments suggest a basic model of the
events occurring in an event trace. Afterwards, we present in section three a general
method for providing higher-level abstractions on top of the basic model which can be
used to easily describe performance properties by means of CREs. In order to give an
example, the method is applied to the message passing programming model in section
four. Section �ve introduces a guiding principle aimed at formally specifying CREs which
is used in section six to de�ne concrete message passing related CREs.

Section seven and eight discuss how the method presented here �ts the APART speci�ca-
tion language (ASL) [4] and propose some extensions aimed at making our results available
to ASL. The ASL is a novel approach to the formalization of performance properties and
the associated data. Finally, we consider related work and conclude the paper.

2 Basic Event Trace Model

2.1 Generating Event Traces

The process of preparing an application for event tracing is called instrumentation. This
involves a modi�cation of the executable application either by inserting event logging
statements into the source code prior to compilation or by modifying the object code
directly. The latter is typically performed by linking function or subroutine calls to ap-
propriate wrapper functions which usually record the call and return events as well as
function speci�c events such as sending or receiving a message.

The application developer must decide where in the program, i.e. for which program
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regions, runtime events should be recorded and which information these event records
should contain. We di�erentiate between static and dynamic instrumentation. Whereas for
static instrumentation this decision is made once before running the application, dynamic
instrumentation allows to change theses parameters during runtime.

There are a multitude of tools for static as well as dynamic instrumentation like PAT [5]
and Dyninst [8]. In most cases, the information recorded for a runtime event includes at
least a time stamp, the location, e.g. the process or node, where the event happened, and
the type of the event. Depending on the event type additional information may be supplied
such as the function name for function call events. Message event records typically contain
details on the message processed like the source and destination location or message tags.
However, in order to keep instrumentation simple the information included in such an
event record is restricted to the data available at the location where and at the moment
when the event occurs.

After program termination the event traces which are generated independently for each
location are merged and sorted according to their time stamps. Systems that only rely on
local clocks have to adjust the time stamps with respect to chronological displacements
and clock drifts.

2.2 The Basic Model

The data formats of trace �les produced by typical tracing environments constitute a basic
model of an event trace. In most cases, there is a small number of record types with an
associated set of well-de�ned data �elds. Hence, the basic model consists of a set of event
types, where each is characterized by a set of attributes.

In most cases, there are event types which share a subset of their attributes. For this
reason, it is convenient to create a type hierarchy containing concrete leaf event types as
well as abstract base event types at di�erent levels which isolate common attributes.

Since the time stamp (time) and the location (loc) attributes are always shared by all
event types, we can de�ne an abstract event type Event constituting the root of the type
hierarchy. All event types inherit from Event.

An event type t is de�ned by a set of attributes fa1; : : : ; ant
g. A subset fa1; : : : ; abt<mt

g
of these attributes may be associated with more general base types. In the remainder we
will use the point notation e:attr to refer to an attribute attr of an event e.

An event trace is a sequence E = fe1; : : : ; emaxg of events, where 8ei; ej 2 E the following
two conditions hold:

1. i < j ) ei:time � ej :time

2. i < j ^ ei:loc = ej :loc ) ei:time < ej :time

Note that an event trace E contains leaf event types only.

3 Model Enhancement

The process of creating programming model speci�c abstractions from a given basic event
trace model is called model enhancement. It results in an enhanced model which is built
on top of the basic model in two steps:
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1. De�ning system states

2. Extending the basic event types

De�ning system states. A system state de�nition is a mapping S : E ! P(E) which
maps an event ei 2 E from the event trace onto a subset S(ei) � E of the events from the
event trace, where

8ej 2 S(ei) : j � i;

i.e. system states only depend on historic data and not on future events. In addition, we
de�ne for each system state mapping S an initial state S0 = ;. A system state Si = S(ei)
of an event ei should re
ect one aspect of the execution state of the application after the
event ei took place.

A system state is de�ned by a set of transition rules. For each leaf event type t in the
model a transition rule �t de�nes how a state Si+1 is created from a state Si and an event
ei+1 of type t by applying �t to Si and ei+1. Thus, we have Si+1 = �t(Si; ei+1), where t is
the type of the event ei+1. If there is no explicitly de�ned transition rule �t for an event
type t and a state function S, �t is assumed to be the identity function. A transition
rule de�ned for an abstract base event type covers all derived event types. But it may
be overwritten by a transition rule de�ned for a more specialized type. The state S1 is
created from the initial state S0 and the event at the �rst position e1.

System states are abstractions used to provide context information for a CRE. In other
words, the intent of system states is to separate activities that are still going on with
respect to a certain point in time from activities that are already completed with respect
to that point in time. Note that in most cases it is useful to de�ne several system state
functions S1; : : :Sns per model.

Extending the basic event types. Another useful abstraction is to link related events
together, so that one can navigate from an event to another related event. This permits
to navigate along a path of related events and to de�ne relationships between constituents
of a CRE using such paths. A natural way of representing such links is to provide event
attributes with pointer semantics. Extending the event types of the basic model including
the abstract base event types by adding pointer attributes is the second step we consider.
Of course, there is no reason to restrict event type extensions to pointer attributes. But
pointer attributes are the most common case for applying this technique.

For each event ei of type t we may de�ne additional attributes fe:p1; : : : ; e:pmt
g, where

ei:pj = fj(ei:a1; : : : ; ei:ant
; S1i�1; : : :S

ns

i�1):

That means, such an additional attribute depends on the attributes de�ned in the basic
model and on the system states of the event immediately before the event instance in
consideration. The rationale behind this de�nition is to disallow functional dependencies
on events belonging to already completed activities. This is not really a restriction, since
in most cases related events occur during the same activity. But it allows to calculate the
additional attributes by remembering only a small set of relevant events which is important
with respect to a later implementation. Also note that pointer attributes never point to
future events.
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The concept of model enhancement is not only a convenient method for de�ning CREs
as we will demonstrate in the next section. Since the locality mentioned earlier is explicitly
modeled in form of system states, we yield also a foundation for e�cient search methods
to detect CRE instances in an event trace.

4 Example: Message Passing

To give an impression of how model enhancement can be used to provide a simple de-
scription of complex CREs, we chose the message passing programming model, one of the
most popular programming models on todays widespread massively parallel systems, as
an example. Although most of the things presented here are independent of a speci�c
message passing library, the terminology used is based on MPI [7].

Typical event tracing environments used in the context of MPI such as [1, 6] de�ne trace
�le formats whose event records provide the following contents:

� All event records contain a process identi�er as well as a time stamp.

� There are two record types for entering (Enter) and leaving (Exit) a program region.
Typically, one data �eld denotes the region entered or left. We assume that a region
instance is only left after all enclosed region instances have been left.

� There are two record types for sending (Send) or receiving (Receive) a message which
provide data �elds for the source (src) and destination (dest) processes, the message
tag and communicator (com), as well as the message length.

Thus, we have four concrete event types which can be arranged in a type hierarchy as
depicted in Fig. 1 using UML notation. Besides the event type Event at the top there
are two abstract event types RegionEvent and MsgEvent at an intermediate level of the
hierarchy. RegionEvent covers event types associated with moving from region to region
and MsgEvent covers event types associated with message exchange.

Event

location
time

Enter Exit Send Receive

destination source

RegionEvent

region

MsgEvent

tag
communicator
length

Figure 1: The basic event trace model for message passing
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4.1 Model Enhancement

De�ning system states. The activities performed by an MPI application at a given
moment are best described by means of the program region instances in which the appli-
cation is executing and the messages which are being in transfer at that moment. The
program region instances can be easily represented by the set of Enter events that deter-
mine their beginnings and the messages are best speci�ed by the set of their respective
Send events. So we de�ne two (groups of) system state functions Rl and M s;d and call Rl

the region stack for location l andM s;d the message queue for tra�c from source s to desti-
nation d. The corresponding state transition rules �l : Rl

i 7! Rl
i+1 and �s;d : M s;d

i 7!M
s;d
i+1

triggered by an event ei+1 are de�ned in Fig. 2.

�lEnter : Rl
i+1 =

(
Rl
i [ fei+1g if ei+1:loc = l

Rl
i else

�lExit : Rl
i+1 =

(
Rl
i n fejg if ei+1:loc = l

Rl
i else

where :9ek 2 Rl
i : ( ej :time < ek :time )

�
s;d
Send : M

s;d
i+1 =

(
M

s;d
i [ fei+1g if ( ei+1:loc = s ^ ei+1:dest = d )

M
s;d
i else

�
s;d

Receive
: M

s;d
i+1 =

(
M

s;d
i n fejg if ( ei+1:src = s ^ ei+1:loc = d )

M
s;d
i else

where ( ej :tag = ei+1:tag ^ ej :com = ei+1:com ) ^

:9ek 2M
s;d
i : ( ej :tag = ek:tag ^

ej :com = ek:com ^
ej :time > ek:time )

Figure 2: State transition rules for Rl and M s;d.

The initial states Rl
0 and M

s;d
0

are de�ned as empty sets ;. �lEnter is responsible for
adding Enter events representing active region instances to the region stack and �lExit is
responsible for removing them from the region stack as soon as the corresponding region
instances are completed. �s;d

Send
and �

s;d

Receive
perform a similar task on Send events in order

to keep the set of messages currently being in transfer up to date.

The condition which characterizes the element that will be removed in case of applying
the rule �lExit requires that the element to be removed is the youngest in Rl

i. In case of

�
s;d

Receive
the condition requires that the element to be removed is the oldest in M

s;d
i with

matching tag and com attributes. Note that the transition rules for Rl also remain valid
in case of recursive function resp. region calls.

The advantage of the de�nitions above is that they provide a convenient vocabulary we
can use when describing performance properties related to message passing as we will see
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later.

Extending the basic event types. Both region instances and messages can be rep-
resented by pairs of matching events. A region instance is characterized by its Enter and
Exit events and a message is described by its Send and Receive events. For this reason,
it would be reasonable to provide a link connecting both sides of each pair, i.e. a link
from the Exit event to its corresponding Enter event and a link from the Receive event to
its corresponding Send event. The direction of these links follows our de�nition from the
previous section which requires all links to point backwards.

However, the relationship connecting an Exit event with its matching Enter event is actually
a specialization of a general relationship between an arbitrary event and the Enter event
of the region instance in which the event takes place. Therefore, the link should connect
an arbitrary event with the Enter event of its enclosing region instance.

We de�ne the following pointer attributes by using conditions which are similar to those
we have already used for the de�nition of system states. The meaning of these attributes
is illustrated in Fig. 3.

enterptr

enter exit
enter exit

send

recv

Loc A

Loc B

sendptr
time

1 1
2 2

1

1

Figure 3: References provided by enterptr and sendptr

� For an arbitrary event ei we de�ne an attribute named enterptr which points to the
Enter event of the region instance in which the event ei takes place: ei:enterptr =
ej 2 Rl

i�1, where

1. ei:loc = l

2. :9ek 2 Rl
i�1 : ( ej :time < ek:time )

If such an ej does not exist, the attribute is set to 'null'. The new attribute is added
to the attributes of the root event type Event.

� For an Receive event ei we de�ne an attribute named sendptr which points to the
corresponding Send event: ei:sendptr = ej 2M

s;d
i�1, where

1. ( ei:src = s ^ ei:loc = d ^ ei:tag = ej :tag ^ ei:com = ej :com )
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2. :9ek 2M
s;d
i�1 : ( ej :tag = ek:tag ^

ej :com = ek:com ^
ej :time > ek:time )

The enhanced model we de�ned so far is illustrated in Fig. 4. Note that in the �gure
the system state functions are interpreted as operations of the root event type Event since
each event can be mapped to corresponding system state instances.

Event

location
time
enterptr

Enter Exit Send Receive

destination source
sendptr

RegionEvent

region

MsgEvent

tag
communicator
length

R(l)
M(s,d)

Figure 4: The enhanced model for message passing

However, we must admit that this model does not support collective operations. The
events involved in collective operations form another class of related events which are
important in the context of MPI related performance properties. The reason for this
shortcoming lies in the missing provision for collective operations on the part of current
instrumentation systems. But recent developments have begun to �ll this gap, so we hope
to adapt our model in the near future. In the following subsection we give a short idea of
integrating collective operations.

4.2 Collective MPI Operations

Tracing environments such as VAMPIR [1] place a pseudo event record between the Enter

and Exit events of a region instance belonging to a collective MPI operation. The pseudo
event contains the communicator whose size is given in a separate communicator de�nition
record. By means of these pseudo events the Exit events belonging to the same collective
operation instance can be identi�ed and collected by de�ning an appropriate system state
function.

5 Specifying CREs

A speci�cation method for CREs representing performance properties of a parallel or
distributed application should meet the following requirements:
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1. It should be simple even in case of complex CREs.

2. It should allow for an e�cient implementation.

The �rst requirement demands to specify the relationships between the constituent events
of a CRE on a very high level of abstraction. The second requirement concerns the
e�ciency of possible search methods. This is especially important in the face of the huge
amount of data typically involved in event tracing. We think that both requirements
can be ful�lled on the basis of enhanced event trace models. We will �rst introduce a
general scheme for specifying CREs and then explain how enhanced event trace models in
conjunction with the scheme proposed here are able to meet the two requirements.

A CRE C consists of a set of primitive events, i.e. its constituents. A constituent event
is an instance of an event type de�ned in an enhanced event trace model. The set of
constituents can be partitioned into a set of disjoint subsets:

C =
[
i2I

Ci; I = f1; : : : ; ng

This partitioning re
ects the logical structure of the CRE. The relationships by which
these subsets are connected can be expressed by functional dependencies in a form such
as the following:

Ci = fi(C
0); C0 =

[
j2J

Cj; J � I

The functions fi involved in the speci�cation of a CRE map a set of events onto another
set of events from the trace. They may use in their de�nitions the abstractions provided
by an enhanced event trace model, i.e. system state functions and the event attributes
including the additional attributes de�ned during model enhancement. Apart from that,
they may access arbitrary events from the event trace and may evaluate conditions over
them. A possible addressing mechanism could use the absolute event positions, i.e. the
index of an event within the event trace sequence, or the position relative to other events.
We do not suggest any notation for specifying these functions. Their speci�cations may
be procedural or functional - whichever method �ts the needs best.

However, to be useful for our purposes this scheme must meet several conditions. First,
we must ensure that the corresponding dependency graph is acyclic. Furthermore, each
Ci except one root partition must have at least one predecessor Cj 6=i it depends on or it
may contain constant events only. So all Ci can be calculated from the root partition by
evaluating the functional dependencies. Of course, it is possible that an evaluation step
fails, so each fi can be considered as a predicate, as well. Without loss of generality let
C0 denote the root partition having no predecessor it depends on. As a �nal condition we
require C0 to have exactly one element which is called the root event of the CRE.

Note that in most cases all subsets of C will consist of only a single event. But permitting
sets of events might be useful, e.g. to make complete system states or collective MPI
operations being part of a CRE.

To complete our scheme we de�ne a predicate root which can applied to an arbitrary
event in order to decide whether it is a possible root event. Now, we are ready to present
a simple pattern matching algorithm:



10 6 CRES IN THE CONTEXT OF MESSAGE PASSING

Algorithm. Searching for all occurrences of a CRE C in an event trace E is straight-
forward. For all events e 2 E do the following:

1. Apply the root predicate to e.

2. If successful, instantiate all constituents which are reachable from the root event by
evaluating the functional dependencies.

3. Instantiate all constituents which are reachable from the constituents being already
instantiated.

4. Repeat the previous step until all constituents are instantiated or an instantiation
step fails.

Remember the two requirements from the beginning of this section. An enhanced event
trace model provides just those abstractions that correspond to the vocabulary of the pro-
gramming model used. So it should be possible to yield a quite simple and understandable
speci�cation for most of the CREs representing typical performance properties by using
these abstractions when de�ning the functions involved in the de�nition of a whole CRE.
We will give a demonstration in the next section.

The e�ciency of a possible implementation of the scheme presented here relies heavily on
the mechanism used for accessing events. Let us consider the following typical scenario:
In order to apply the algorithm described above for locating instances of a CRE a search
tool walks sequentially through the event trace. If an event ful�lls the root predicate, the
tool will start to evaluate the tree of functional dependencies used for de�ning the CRE.
It will try to access other events from the event trace. As already mentioned, observations
show that most of these events belong to the context of the root event, i.e. events from
the corresponding system state or events belonging to the recent past of the root event.
All the tool would have to do is to keep track of the context belonging to the events it
accesses during its sequential walk and to provide e�cient access to this context, e.g. by
bu�ering. Experiences gathered with EARL showed that in most cases this approach leads
to a quite workable e�ciency.

Of course, the scheme itself does not impose any restrictions on the complexity of the
functions fi, so these have to be de�ned carefully. But our experiences suggest that in the
context of performance analysis the complexity of the required functions is manageable.

6 CREs in the Context of Message Passing

In this section we present three examples1 of how to represent performance properties
in MPI applications as CREs. Note that all three examples cannot be expressed using
pro�ling data only. The speci�cations are based on the enhanced event trace model we
presented before.

6.1 Late Sender

The �rst example describes the situation which occurs, when an MPI RECV operation
is posted before the corresponding MPI SEND has been started (Fig. 5). The receiver

1The partitions Ci of the CREs presented here will always contain a single event which is indicated by
using a symbol beginning with a lower-case letter.
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remains idle during the interval between the two calls instead of doing useful computation.

enterptr

enter_send

send_msg

root

Loc A

Loc B

sendptr
enter_recv

enterptr

wasted

time

MPI_Send

MPI_Recv

Figure 5: Late sender CRE

This CRE consists of four partitions froot; send msg; enter recv; enter sendg, each con-
taining a single event only: The root event resp. partition is just the event indicating the
message arrival, i.e. an event of type Receive. Thus, we have the following root predicate:

type(root) = Receive

The other three events are the event of sending the message (send msg), the event of
entering the MPI SEND region (enter send), and the event of entering the MPI RECV
region (enter recv). They are de�ned as follows:

send msg = root:sendptr

enter recv =

(
root:enterptr if root:enterptr:region = MPI RECV

fail else

enter send =

8><
>:
send msg:enterptr if send msg:enterptr:region = MPI SEND ^

enter send:time > enter recv:time

fail else

Applying the algorithm to this CRE speci�cation would result in the following sequence of
actions. When a potential candidate for the root event has been found by evaluating the
root predicate, i.e. when a event of type Receive has been found, the algorithm traces back
the sendptr attribute of the root event to locate the corresponding send event (send msg).
Now the event by which the MPI RECV has been entered (enter recv) is determined by
navigating along the enterptr attribute of the root event. To be sure that this event
really refers to a region instance of MPI RECV, the region attribute is checked. In the
same manner enter send is instantiated. But here an additional constraint is taken into
consideration which is essential for the whole CRE. The MPI RECV has to be called
before the MPI SEND. So the two time stamps must be compared. After instantiation
of all CRE constituents a tool might consider to compute the amount of wasted time by
subtracting the two time stamps.
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6.2 Late Receiver

enterptr

enter_send

send_msg

root

Loc A

Loc B

sendptr

enter_recv

enterptr

time

MPI_Send

MPI_Recv

Figure 6: Late receiver CRE

This CRE refers to the inverse case. An MPI SEND blocks until the corresponding receive
operation is called. This can happen for several reasons. Either the MPI implementation
is working in synchronous mode by default or the size of the message to be sent exceeds the
available bu�er space and the operation blocks until the data is transfered to the receiver.
The behavior is similar to an MPI SSEND waiting for message delivery. The situation is
depicted in Fig. 6. The de�nition is similar to the previous CRE, in particular the root
predicate is the same, so we do not show it here again.

send msg = root:sendptr

enter recv =

(
root:enterptr if root:enterptr:region = MPI RECV

fail else

enter send =

8>>><
>>>:
send msg:enterptr if send msg:enterptr:region = MPI SEND ^

enter send:time < enter recv:time ^

enter send 2 Rsend msg:loc(enter recv)

fail else

An important di�erence to the previous CRE is the condition appearing in the de�nition of
enter send. Of course, now enter send:time must be less than enter recv:time, since the
receiver must be later than the sender. In addition, the MPI SEND operation must not
have �nished before the MPI RECV has been called. So we look at the region stack of the
location from where the message was sent and at the time just after the MPI RECV call
was posted (Rsend msg:loc(enter recv)). If enter send is an element of this set, MPI SEND
and MPI RECV overlap in time.

However, we must admit that this criterion does not prove waiting of MPI SEND due to
lack of bu�er space with maximum reliability. But this criterion is a necessary condition
and it is the strongest we can prove based on the data available in an event trace delivered
by current instrumentation systems. A detailed description of the performance problem
related to this CRE can be found in [7].
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6.3 Receiving Messages in Wrong Order

Figure 7: Passing messages out of order

The third example is taken from the Grindstone Test Suite for Parallel Performance Tools
[9] and highlights the problem of passing messages out-of-order. This problem can arise
if one process is expecting messages in a certain order, but another process is sending
messages which are not in the expected order. In Fig. 3 an extreme example is shown: In
the left part of the picture node 1 is processing incoming messages in the opposite order
as sent from node 0. Processing them in the order they were sent would not only speed
up the program but would also require much less bu�er space for storing unprocessed
messages. This is shown in the right part of the picture.

We model this situation as a message which is sent later but received earlier than another
message with the same sender and receiver. For this reason, the CRE consists of two
partitions, each containing only a single event. The root event is the message receipt, the
other event is the message dispatch. Again, the root predicate requires only the event
type to be Receive. The CRE is de�ned as follows:

send msg =

8><
>:
root:sendptr if 9e 2M root:src;root:loc(root) :

e:time < root:sendptr:time

fail else

The condition on the right side requires that there are older messages in the 'message
queue' for tra�c between the source and the destination location of the message in con-
sideration which have not been received at the time that message has been received.
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6.4 Remarks

Note that the examples presented in the previous subsections expose an interesting prop-
erty of the description method used here. The CRE de�nitions can be divided into two
parts. The �rst part is responsible for locating, i.e. instantiating, the constituents of the
CRE. The second part places additional constraints on the constituents which are essential
for the performance property they describe. Since checking for these constraints is not re-
quired for a correct instantiation nor it depends on any evaluation order, we could consider
to explicitly separate the constraint part from the instantiation part. These considera-
tions also include the root predicate. The root predicate can be divided into a condition
requiring a certain type and optional constraints if necessary.

In particular the de�nition of large CREs would bene�t since the constraint part could be
organized in semantically related groups. E.g. the de�nition of the second example might
be written like this:

Root Type

Receive

Instantiation

send msg = root:sendptr

enter recv = root:enterptr

enter send = send msg:enterptr

Constraint

root:enterptr:region = MPI RECV ^
send msg:enterptr:region = MPI SEND ^
enter send:time < enter recv:time ^
enter send 2 Rsend msg:loc(enter recv)

7 Event Trace Model Enhancement and ASL

The APART speci�cation language ASL [4] which has been developed by the APART
Esprit IV Working Group on Automatic Performance Analysis: Resources and Tools is a
novel approach to the formalization of performance properties and the associated perfor-
mance related data. ASL provides a formal notation for de�ning performance properties
related to di�erent programming models. It allows to reference performance related data
items by means of an object-oriented speci�cation model. ASL distinguishes between
static data which is known at compile time, e.g. information on source code entities, and
dynamic data which is generated at runtime, e.g. CPU time summaries.

In the ASL terminology a performance property represents one aspect of performance
behavior. To test whether such a property is present in an application, an associated
condition must be evaluated based on the current performance data. The con�dence of a
property speci�es the reliability of the test condition. If the condition evaluates to true,
the severity of a property indicates its relative importance with respect to other properties.

However, the current ASL data model mainly concentrates on pro�ling data, i.e. summary
information, and does not take advantage of the more detailed information contained in
event traces. The very �ne grained view on the execution behavior provided by event
traces can be used to identify hidden idle times, to detect programming errors, or to
trace back performance problems to source code entities in a way being not supported by
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pro�ling data. In particular the notion of CREs indicating the existence of performance
properties is not part of the current ASL speci�cation. But the very general design of
ASL permits the easy integration of our results into the language, thereby requiring only
minor extensions which are presented in the next subsections. The extensions are divided
into two parts. The �rst part deals with the ASL language, the second part with the ASL
speci�cation model.

7.1 Extending the ASL Language

7.1.1 Expression Syntax

To be able to express state transition rules we need conditional expressions, so we extend
the grammar symbol expr by adding a further alternative. In addition, we provide a
possibility to create a set from a list of single elements. The empty set is created by
substituting the symbol reference-list by an empty list. Finally, we introduce the NULL

value literal indicating a void reference. The required grammar extensions are depicted in
Fig. 82.

expr is [. . . ]
or cond-expr

cond-expr is if-part elif-part � [else-part ]
if-part is IF '(' bool-expr ')' expr
elif-part is ELIF '(' bool-expr ')' expr
else-part is ELSE expr

set-expr is [. . . ]
or 'f' reference-list 'g'

reference is [. . . ]
or NULL

Figure 8: Expression syntax extensions.

7.1.2 Specifying CREs

CREs are speci�ed in ASL by a new language construct pattern. Its name is motivated
by thinking of CREs as event patterns. Its syntax is de�ned in Fig. 9. Since ASL is more
intended to specify CREs than to implement e�cient matching algorithms, the pattern
construct is designed according to the remarks in section 6.4.

CRE speci�cations can be parameterized by declaring formal parameters in the arg-list.
These parameters as well as the local de�nitions from the optional LET clause can be
used in the subsequent parts of the CRE speci�cation. The ROOTTYPE clause contains
the type of the root event. If it is necessary to allow the root event to have multiple
types, a common base type can be used here. The CRE partitions are de�ned in the

2In the �gure we use [: : :] as an abbreviation for the unchanged parts of the production rules as de�ned
in [4].
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pattern is PATTERN p-name '(' arg-list ')' 'f'
[LET

def �
IN ]

p-roottype
p-instantiation
p-constraint
p-export

'g;'

arg is type ident
p-roottype is ROOTTYPE ':' ident ';'
p-instantiation is INSTANTIATION ':' const-def �
p-constraint is CONSTRAINT ':' bool-expr
p-export is EXPORT [m-name ]':' const-def �

Figure 9: Pattern speci�cation syntax.

INSTANTIATION clause. Partitions consisting of only a single element are expressed by
simple constant de�nitions. Partitions consisting of more than one element have to be
de�ned using a set type. It is possible to use conditional expressions here, if a correct
instantiation only can be guaranteed by evaluating a condition. If an instantiation step
fails, the expression used in the constant de�nition should evaluate to NULL. A condition
representing additional CRE properties which are not needed for instantiation can be
placed in the CONSTRAINT clause. The EXPORT clause de�nes attributes whose values are
computed from the CRE constituents. The attributes can be accessed through match
objects of the pattern. So the export clause implicitly de�nes a class to which the match
objects will belong. If necessary, the class can be given a name m-name.

The root event as well as the complete event trace can be referenced in a CRE de�nition by
the two keywords ROOT and TRACE. In a future implementation these keywords are bound
to the current root event and the event trace being investigated by the search algorithm.

The pattern construct should not be seen as an alternative to the property construct. It
is rather an instrument to increase its expressiveness as we will see later.

7.1.3 Pattern Matches

A pattern speci�es two things. Firstly, it speci�es a parameterized algorithm to detect
CREs representing a certain behavior of the parallel application. Instances of the algo-
rithm are created by using p-name() as constructor and by providing actual parameters
according to the signature of the pattern. Such an instantiated algorithm is considered to
be an instance of class p-name. Secondly, the pattern speci�es a class representing pattern
matches by de�ning its attributes in the export clause.

The pattern matches contained in an event trace can be obtained by an external function
which is implicitly de�ned together which each pattern de�nition:

setof m-name PATTERN MATCHES(p-name p, setof events trace);
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External means that the semantics of this function are not de�ned explicitly in ASL. But
the function is de�ned implicitly by our algorithm from section 5. The restriction to pat-
tern instances occurring while the program is executing in a region r can be implemented
by supplying the region as an argument to the pattern constructor and by checking the
region stack in the constraint clause. So it is possible to de�ne exactly which constituents
should be inside and which should be outside the region.

Note that de�ning more than one pattern will lead to an overloaded PATTERN MATCHES()

function whose return type depends on the �rst argument. This is a consequence of the

exibility introduced by the export clause. Another way would be to restrict pattern
de�nitions to a �xed set of exported attributes. But this would also restrict the usefulness
of patterns in property de�nitions.

7.1.4 Pattern Templates

Similar to property speci�cations, pattern speci�cations can also bene�t from templates.
Pattern templates can provide a convenient way to de�ne related patterns by using a
de�ned function or comparison operator as a parameter, e.g.:

PATTERN TEMPLATE LatePartner <boolean rel op(float a, float b)>

It is also conceivable to de�ne a new pattern based on existing pattern speci�cations by
using a meta-pattern. Meta-patterns would again be de�ned as pattern templates but
using an already de�ned pattern as a parameter. However, we will not go further into
detail here.

7.2 Extending the ASL Speci�cation Model

The integration of pattern based performance properties also requires an extension of
the ASL speci�cation model. In this subsection we describe the programming model
independent extensions. The extensions comprise both new classes (Fig. 10) and new
functions (Fig. 11, 12). The state functions as well as the pointer attributes are de�ned
as global functions. The transition rules of the state functions can be easily transformed
into recursive de�nitions.

class RegionEvent extends Event {

Region region; // region entered or left

}

class Enter extends RegionEvent {

}

class Exit extends RegionEvent{

}

Figure 10: New classes added to the ASL speci�cation model.
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setof Enter R(Event e, Process p) =

IF (e == NULL)

{}

ELIF (typeof(e) == Enter AND e.process_id == p)

R(PRED(e), p) + { e }

ELIF (typeof(e) == Exit AND e.process_id == p)

R(PRED(e), p) - UNIQUE({

f IN R(PRED(e), p) SUCH THAT

NEXISTS g IN R(PRED(e), p)

SUCH THAT g.timestamp > f.timestamp

})

ELSE

R(PRED(e), p);

Figure 11: Region stack of a process.

Enter enterptr(Event e) =

IF (R(PRED(e), p) == NULL)

NULL

ELSE

UNIQUE({

f IN R(PRED(e), e.process_id) SUCH THAT

NEXISTS g IN R(PRED(e), e.process_id)

SUCH THAT g.timestamp > f.timestamp

});

Figure 12: The enterptr() function representing the enterptr attribute.

New classes. Entering and leaving a Region is a more general concept outside any
speci�c programming paradigm, so we de�ne the event types associated with entering and
leaving a region at this more general level. The new classes are de�ned according to the
basic model from section 4.

New functions. Naturally, the system state function(s) Rl has to be de�ned at this
level, as well. But �rst, we declare an external predecessor function as a prerequisite
needed later which maps an event to its predecessor within the event trace.

Event PRED(Event e);

This function has not to be de�ned explicitly in ASL, since it is de�ned implicitly by
the event order produced by common instrumentation systems according to our event
trace model from section 2.2. Now, Rl can be expressed by a single function with the
corresponding process id as a parameter. A function representing the enterptr attribute is
also de�ned.
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Note that we could shorten the de�nition, if we used the enterptr() function for de�ning
the R() system state function. Apart from that, a more convenient way of expressing
these functions would be to de�ne them as operations of class Event and its subclasses,
thereby making use of virtual operations. Unfortunately, ASL currently does not support
operations associated with a class.

8 MPI Related CRE Speci�cation in ASL

This section demonstrates the new features of ASL in the context of the message passing
paradigm. We try to express the MPI speci�c part of the enhanced event trace model as
well as the examples from section 6 using the new ASL features.

8.1 Extending the MPI Part of the ASL Speci�cation Model

In this subsection we de�ne some extensions to the MPI related part of the ASL speci�-
cation model which are required as prerequisites for our later CRE speci�cations.

New classes. We introduce two further concrete event types Send and Receive repre-
senting the dispatch and the receipt of a message (Fig. 13). The message properties are
de�ned in an abstract base event type MsgEvent.

class MsgEvent extends Event {

int tag; //message tag

Communicator communicator; //communicator

int length; //message length in bytes

}

class Send extends MsgEvent {

Process destination; //id of destination process

}

class Receive extends MsgEvent {

Process source; //id of source process

}

Figure 13: New classes added to the MPI related speci�cation model.

New functions. We de�ne the state function(s) M s;d similar to the region stack func-
tion(s) Rl (Fig. 14). Apart from that, we de�ne a function sendptr() representing the
sendptr attribute (Fig. 15). Of course, sendptr() can only be applied to instances of
class Receive.

8.2 MPI Related CREs in ASL

Based on the de�nitions from the previous subsection, we can now start specifying the
MPI related CREs in ASL using the new pattern construct:
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setof Send M(Event e, Process s, Process d) =

IF (e == NULL)

{}

ELIF (typeof(e) == Send AND e.process_id == s AND e.destination == d)

M(PRED(e), s, d) + { e }

ELIF (typeof(e) == Receive AND e.source == s AND e.process_id == d)

M(PRED(e), s, d) - UNIQUE({

f IN M(PRED(e), s, d) SUCH THAT

(e.tag == f.tag AND

e.communicator == f.communicator AND

NEXISTS g IN M(PRED(e), p)

SUCH THAT

(f.tag == g.tag AND

f.communicator == g.communicator AND

g.timestamp < f.timestamp )) })

ELSE

M(PRED(e), s, d);

Figure 14: Message queue for tra�c from a source to a destination location.

Send sendptr(Receive r) =

UNIQUE({

f IN M(PRED(e), r.source, r.process_id) SUCH THAT

(r.tag == f.tag AND

r.communicator == f.communicator AND

NEXISTS g IN M(PRED(e), r.source, r.process_id)

SUCH THAT

(f.tag == g.tag AND

f.communicator == g.communicator AND

g.timestamp < f.timestamp ))

});

Figure 15: The sendptr() function representing the sendptr attribute.
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8.2.1 Late Sender

PATTERN LateSender(Region r) {

ROOTTYPE: Receive;

INSTANTIATION:

Send send_msg = sendptr(ROOT);

Enter enter_recv = enterptr(ROOT);

Enter enter_send = enterptr(send_msg);

CONSTRAINT:

EXISTS e IN R(ROOT, ROOT.process_id) SUCH THAT e.region == r AND

enterptr(ROOT).region == MPI_RECV AND

enterptr(send_msg).region == MPI_SEND AND

enter_send.timestamp > enter_recv.timestamp;

EXPORT:

float idle_time = enter_send.timestamp - enter_recv.timestamp;

}

The �rst sub-proposition of the conjunction in the constraint clause requires the root event
to occur when the process of the root event is executing in region r. Note that this only
one possible way of de�ning a constraint concerning the region in which a pattern match
occurs.

8.2.2 Late Receiver

PATTERN LateReceiver(Region r) {

ROOTTYPE: Receive;

INSTANTIATION:

Send send_msg = sendptr(ROOT);

Enter enter_recv = enterptr(ROOT);

Enter enter_send = enterptr(send_msg);

CONSTRAINT:

EXISTS e IN R(ROOT, ROOT.process_id) SUCH THAT e.region == r AND

enterptr(ROOT).region == MPI_RECV AND

enterptr(send_msg).region == MPI_SEND AND

enter_send.timestamp < enter_recv.timestamp AND

EXISTS e IN R(enter_recv, send_msg.process_id)

SUCH THAT e == enter_send;

EXPORT:

float idle_time = enter_recv.timestamp - enter_send.timestamp;

}

8.2.3 Messages in Wrong Order

This pattern can introduce costs in several ways. First, it can lead to a situation equal to
Late Sender as depicted in Fig. 7. But is is also possible, that costs are introduced owing
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to a blocking sender. If the messages sent before the current message allocated all the
bu�er space owned by the sending process, the sender might block until the corresponding
receive operation is posted. This is equal to Late Receiver. But note that this situation
may also end up in a deadlock, if the receiver is waiting for another message not being
sent because of a blocked sender. In our ASL de�nition we want to distinguish between
these two cases and therefore de�ne two versions of the pattern. The di�erence is re
ected
in the constraint clause as well as in the export clause. Thus, the two patterns can be
considered as specializations of the previous ones.

PATTERN WrongOrderLs(Region r) {

ROOTTYPE: Receive;

INSTANTIATION:

Send send_msg = sendptr(ROOT);

Enter enter_recv = enterptr(ROOT);

Enter enter_send = enterptr(send_msg);

CONSTRAINT:

EXISTS e IN R(ROOT, ROOT.process_id) SUCH THAT e.region == r AND

EXISTS s IN M(ROOT, send_msg.process_id, ROOT.process_id)

SUCH THAT s.timestamp < send_msg.timestamp AND

// constraints refering to late sender

enterptr(ROOT).region == MPI_RECV AND

enterptr(send_msg).region == MPI_SEND AND

enter_send.timestamp > enter_recv.timestamp;

EXPORT:

float cost = (enter_send.timestamp - enter_recv.timestamp);

}

PATTERN WrongOrderLr(Region r) {

ROOTTYPE: Receive;

INSTANTIATION:

Send send_msg = sendptr(ROOT);

Enter enter_recv = enterptr(ROOT);

Enter enter_send = enterptr(send_msg);

CONSTRAINT:

EXISTS e IN R(ROOT, ROOT.process_id) SUCH THAT e.region == r AND

EXISTS s IN M(ROOT, send_msg.process_id, ROOT.process_id)

SUCH THAT s.timestamp < send_msg.timestamp AND

// constraints refering to late receiver

enterptr(ROOT).region == MPI_RECV AND

enterptr(send_msg).region == MPI_SEND AND



8.3 Taking Advantage of Pattern Templates 23

enter_send.timestamp < enter_recv.timestamp AND

EXISTS e IN R(enter_recv, send_msg.process_id)

SUCH THAT e == enter_send;

EXPORT:

float cost = (enter_recv.timestamp - enter_send.timestamp);

}

8.3 Taking Advantage of Pattern Templates

Note that the LateSender and LateReceiver pattern expose a very similar structure, so we
might consider using pattern templates resp. meta-patterns. Since both patterns share
the same instantiation clause and substantial parts of the constraint clause, it would be
natural to isolate this part in a separate de�nition.

However, if we parameterize the time comparison in the constraint clause, the relationship
between the two patterns becomes a generalization/specialization relationship which might
be represented by some kind of inheritance.

The WrongOrder pattern family also contains common elements which might be subject
to reuse.

8.4 Using Patterns in Property De�nitions

Remember that the original purpose of patterns was to make the very detailed information
contained in event traces available to property de�nitions. In order to meet our goal, we
rede�ne the late sender/late receiver properties and add two new properties related to
sending messages in wrong order.

8.4.1 late sender

PROPERTY late_sender(Region r, Experiment e, Region rank_basis){

LET

float idle_time = SUM m.idle_time

WHERE m IN PATTERN_MATCHES(LateSender(r), e.trace);

IN

CONDITION: idle_time>0;

CONFIDENCE: 1;

SEVERITY: idle_time/duration(rank_basis,e);

}

The algorithm checks for pattern instances which occurred when the application was ex-
ecuting in a region r. As opposed to the former de�nition from [4] which associates this
property with a point-to-point primitive belonging to a message passing library, the prop-
erty becomes now associated with a region de�ned in the parallel application itself. This is
obviously more useful, since it helps more in locating a potential performance bottleneck.
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8.4.2 late receiver

PROPERTY late_receiver(Region r, Experiment e, Region rank_basis){

LET

float idle_time = SUM m.idle_time

WHERE m IN PATTERN_MATCHES(LateReceiver(r), e.trace);

IN

CONDITION: idle_time>0;

CONFIDENCE: medium;

SEVERITY: idle_time/duration(rank_basis,e);

}

8.4.3 wrong order ls

PROPERTY wrong_order_ls(Region r, Experiment e, Region rank_basis){

LET

float cost = SUM m.cost

WHERE m IN PATTERN_MATCHES(WrongOrderLs(r), e.trace);

IN

CONDITION: cost>0;

CONFIDENCE: 1;

SEVERITY: cost/duration(rank_basis,e);

}

8.4.4 wrong order lr

PROPERTY wrong_order_lr(Region r, Experiment e, Region rank_basis){

LET

float cost = SUM m.cost

WHERE m IN PATTERN_MATCHES(WrongOrderLr(r), e.trace);

IN

CONDITION: cost>0;

CONFIDENCE: medium;

SEVERITY: cost/duration(rank_basis,e);

}

9 Related Work

An alternative approach to describe complex event patterns was realized in [2]. The pro-
posed Event De�nition Language (EDL) is focused on specifying incorrect behavior of
distributed systems and allows the de�nition of compound runtime events in a declara-
tive manner based on extended regular expressions where primitive events are clustered
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to higher-level events by certain formation operators. Relational expressions over the at-
tributes of the constituent events place additional constraints on valid event sequences
obtained from the regular expression. Abstraction mechanisms allow the reuse of already
de�ned event patterns to form custom hierarchies of events. However, problems arise when
trying to describe events that are associated with some kind of state.

Another method of representing performance problems is applied in the well-known Para-
dyn project [10]. In contrast to our approach Paradyn uses hypotheses and corresponding
tests based on metric-focus grids. A metric-focus grid is a two dimensional matrix. The
�rst dimension represents performance metrics, such as CPU time, blocking time, message
rates, I/O rates, or number of active processors. The second dimension represents individ-
ual program components, such as procedures, processor nodes, disks, message channels,
or barrier instances. The matrix cells contain the value of a metric with respect to one
program component.

The method presented here is strongly in
uenced by the experiences gained during the
design of the EARL trace analysis language [13]. EARL is aimed at providing basic
building blocks for automatic performance analysis of message passing programs based on
event traces. Just as in this paper a performance property is considered as a compound
runtime event occurring in an event trace produced by a parallel application. The EARL
trace analysis language helps to easily specify an appropriate search algorithm by providing
useful abstractions allowing the algorithm to have a very simple structure even in case of
complex event patterns. The abstractions are created as described in section 4 and are
implemented as an extension to common scripting languages like Perl [11], Python [3] or
Tcl [12]. So the remaining parts of the search algorithm can be built using one of the
three scripting languages.

The EXPERT [14] tool architecture is designed on top of EARL and provides a Python
class library for the detection of typical problems a�ecting the performance of MPI pro-
grams. EXPERT is characterized by a separation of the performance property speci�ca-
tions from the actual analysis process. This separation enables EXPERT to handle an
arbitrary set of performance properties. A graphical user interface makes utilizing the
class library for detection of typical MPI performance properties straightforward. In addi-
tion, a 
exible plug-in mechanism allows the experienced user to easily integrate property
speci�cations speci�c to a distinct parallel application without modifying the tool.

10 Conclusion

Event traces provide a very �ne grained view on the performance behavior of a parallel
application. Based on this view, performance properties which cannot be represented
by pro�ling data can be speci�ed in terms of compound runtime events (CREs). Using
such speci�cations an automatic tool should be able to report the application designer on
reasons for ine�cient program behavior.

In many cases, a CRE indicating ine�cient performance behavior exhibits a quite complex
structure. Most of the relationships by which its constituents are interconnected depend
on a speci�c programming model which makes it di�cult to capture all such situations by
means of one general representation method.

To overcome this problem, we presented a generic technique named event trace model
enhancement for de�ning programming model speci�c abstractions allowing a simple de-
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scription of CREs in the context of that programming model. The abstractions include
system states and links between related events. System states separate ongoing activities
from activities that are already completed. Based on the observation that in most cases
the constituents of a CRE refer to a common set of ongoing activities, the de�nition of
system states provides also a foundation for e�cient search methods. Links pointing from
one event to other related events allow to easily de�ne a relationship between the con-
stituents of a CRE along a path of relationship primitives. Now, a CRE can be speci�ed
on top of these abstractions by functional dependencies between its logical parts.

We demonstrated our approach by de�ning three example CREs representing typical per-
formance properties of message passing programs. Although all three CREs are quite
complex, their corresponding de�nitions are surprisingly short. This is essentially a result
of de�ning them in terms of the message passing programming model which has become
possible through event trace model enhancement.

In addition, we showed, that our approach can be easily integrated into the APART
speci�cation language, a novel research project directed towards a formal representation
of performance properties.

Event trace model enhancement is especially well-suited for hybrid programming models
which are of major importance in the emerging �eld of SMP cluster computing. The
increased architectural complexity of these systems often demands the concurrent usage
of more than one programming model in the same application. Assuming that there is
already an enhanced event trace model for one programming model, a hybrid enhanced
model can be easily constructed, since the system state and pointer attribute de�nitions
of an enhanced model are invariant with respect to new event types which may be added
later.

Last, it should be pointed out that all information delivered by pro�ling tools can also be
derived from the information contained in event traces. Additionally, based on our ideas a
pro�ling system might be envisioned which is able to deliver the necessary data calculated
at runtime using the speci�ed CREs as a basis but without generating the potentially
large event traces.
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