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PrefaceThis report contains the Proceedings of the Workshop on Parallel / high-per-formance Object-Oriented Scienti�c Computing (POOSC'99) at the EuropeanConference on Object-Oriented Programming (ECOOP'99) which is held in Lis-abon, Portugal on June 15, 1999. The workshop is a joint organization by theSpecial Interest Group on Object Oriented Technologies of the Esprit WorkingGroup EuroTools and Los Alamos National Laboratory.While object-oriented programming is being embraced in industry, partic-ularly in the form of C++ and Java, its acceptance by the parallel / high-performance scienti�c programming community is tentative at best. In this lat-ter domain performance is invariably of paramount importance, where even thetransition from FORTRAN 77 to C is incomplete, primarily because of perfor-mance loss. On the other hand, three factors together practically dictate theuse of language features that provide better paradigms for abstraction: increas-ingly complex numerical algorithms, application requirements, and hardware(e.g. deep memory hierarchies, numbers of processors, communication and I/O).In spite of considerable skepticism in the community, various small groups aredeveloping signi�cant parallel scienti�c applications and software frameworks inC++ and FORTRAN 90; others are investigating the use of Java. This work-shop seeks to bring together practitioners and researchers in this emerging �eldto `compare notes' on their work { describe existing, developing, or proposedsoftware; tried and proposed programming languages and techniques; perfor-mance issues and their realized or proposed resolution; and discuss points ofconcern for progress and acceptance of object-oriented scienti�c computing.By request of the publisher, only a report of the workshop will appear in theECOOP'99 Workshop Reader. Because of this, we decided to publish a collectionof selected papers ourselves. The papers included re
ect the multidisciplinarycharacter and broad spectrum of the �eld. We thank all contributors for theircontribution and cooporation. The organizers also want to thank Ana MariaMoreira for the work and help organizing this workshop. Finally we thank allthe attendees and contributors who made this workshop a high quality event!June 1999 Kei DavisFederico BassettiBernd Mohr
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Object Oriented Concepts for ParallelSmoothed Particle HydrodynamicsSimulationsStefan H�uttemann1 Michael Hipp1 Marcus Ritt1 Wolfgang Rosenstiel1Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingenArbeitsbereich f�ur Technische InformatikSand 13, 72076 T�ubingene-mail: fhippm,hutteman,ritt,roseng@informatik.uni-tuebingen.deAbstract. In this paper we present our object oriented concepts for parallel smoo-thed particle hydrodynamics simulations based on a 3 year work experience in agovernment funded project with computer scientists, physicists and mathemati-cians.1In this project we support physicists to parallelize their simulation methodsand to run these programs on supercomputers like the NECSX-4 and CrayT3Einstallations at HLRS Stuttgart (www.hlrs.de).First we introduce our portable parallel (non object oriented) environment DTS.Benchmarks of simulations we parallelized are shown, to demonstrate the e�ciencyof our environment.Based on these experiences we discuss our concepts developed so far, and futureideas for object oriented parallel SPH simulations at two di�erent layers. An objectoriented message passing library with load-balancing mechanisms for our simula-tions at the lower level, and an object oriented parallel application library for ourphysical simulations on the upper level.1 MotivationIn a collaborate work of physicists, mathematicians and computer scien-tists, we simulate astrophysical systems. In this paper we present our objectoriented concepts based on our experiences made in a government-fundedproject1 in the last three years. Smoothed Particle Hydrodynamics (SPH)is the method used by the astrophysicists to solve a Navier-Stokes equation(see [3], [6]). SPH became widely popular in the last years. SPH is now alsoused as an alternative for grid based CFD simulations (e.g. in automobileindustry).The astrophysical problems are open boundary problems of viscous com-pressible 
uids. SPH uses particles that move with the 
uid instead of grid1 SFB 382: "Verfahren und Algorithmen zur Simulation physikalischer Prozesseauf H�ochstleistungsrechnern" (Methods and algorithms to simulate physical pro-cesses on supercomputers)



points as in other CFD simulation methods. This makes SPH much moredi�cult to parallelize than grid based CFD methods.1.1 Portable EnvironmentProgramming with threads showed to be well-known and simple enough toserve as a basis for a portable parallel programming environment. The �rstapproach, named "Distributed threads system" (DTS) [5] generalized thenotion of threads for distributed memory machines. A compiler was writtento simplify the task of identifying and creating parallel threads.A major drawback of this system was its pure functional programmingmodel: the communication between threads running on di�erent nodes wasnot well supported. We are investigating, whether a combination of (global)threads and distributed shared memory, i.e. a logical consistent memory formachines with physically distributed memory, is suitable for our applications.Currently we are working at the task of combining the basic ideas of thissystem, namely distributed threads and shared memory, with object-orientedconcepts. This system, written in C++, is described in section 3.For Cray T3E we used another approach. We provide a high level appli-cation interface optimized for SPH-like programs. The library has a simple touse interface and hides near all of the parallelization and explicit communi-cation. A programmer only has to give some hints to optimize the communi-cation and load balancing. The library itself is based on the native SHMEMmessage passing for CrayT3E or alternatively on MPI.1.2 The need for Object-Oriented techniquesThere were reasons to redesign our simulation environment using object-oriented techniques:1. using message objects on the lowest level to communicate between con-current program units on distributed memory computers seems to bemost natural and easy to use for our simulation methods.2. the growing complexity of our simulation programs requires structuralelements in the programming paradigm not o�ered by e.g. FORTRANor C. Also using an object-oriented approach to describe the problem iscloser to the physical model used.3. to exploit the usual features promised by object-oriented programming(reusability etc.) our project partners tried programming in C++; whichresulted in anything but reusable, modular software. It showed, thatjust by switching to C++ physicists do not gain much, and fall backto FORTRAN-style programming.Our goal is to provide a well documented library of reusable and extensi-ble solutions for astrophysical simulation methods. This also should givea guideline on how to use object-oriented techniques for our simulationmethods (e.g. SPH).



2 Parallelizing SPHWe could gain a lot of experience with two di�erent types of parallelization ofthe SPH code for shared memory machines based on DTS and for machineswith distributed memory for which we developed a portable procedural li-brary.Both implementations can compete with other SPH codes for parallelmachines such as the codes for CrayT3D, CM-5 or Intel Paragon [4,2].2.1 Shared Memory MachinesThe SPH code was implemented on the NECSX-4 using DTS. The usageof DTS allows to run the same SPH code both on the NEC SX-4 and onother machines1 without modi�cations. The parallel SPH code was used forbenchmarking, using di�erent numbers of CPUs. The results prove the highquality of the parallelization features of the NECSX-4.The right side of �g. 1 shows the parallel e�ciency of the parallel SPHcode on the NEC SX-4. For 10000 particles the parallel e�ciency decreasesfrom 90% on two CPUs to 60% on 20 CPUs. For 100000 particles the parallele�ciency is more than 90% for all 20 CPUs.Further runtime improvement can be reached by vectorization of the code.In the left side of �g. 1 we present a comparison of the runtimes of SPH simu-lations of the same test problem with di�erent codes. Together, the measure-ments in �g. 1 show, that already using as less as 2 CPUs on the NECSX-4 aruntime improvement compared to the optimal sequential SPH code can beachieved. As the e�ciency is excellent for 20 processors, very good runtimeimprovements can be expected using more CPUs.
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2.2 Distributed Memory ArchitecturesBesides the DTS SPH code for shared memory machines, there are a fewimplementations for SPH on parallel machines such as the PTreeSPH [1].The PTreeSPH code is based on MPI and, therefore, is portable to nearlyevery platform. We decided to go another way, because we see the needfor a more e�cient implementation on some architectures. We developed anabstraction layer optimized for SPH like problems with two di�erent low levelimplementations for the communication.The slower portable implementation is based on MPI. The other imple-mentation is based on the Cray SHMEM message passing library, which pro-vides functions oriented at the CrayT3E hardware capabilities and thereforgains a better performance.Having two di�erent implementations allowed us to test the 
exibility ofour SPH abstraction layer. We �rst wrote the SHMEM implementation andspeci�ed the interface on which we put our physical code. It showed thatthe layer was 
exible enough to later add a MPI implementation withoutchanging the interface or the physical application.Parallelization An essential idea for parallelization was to use two di�erentdomain decompositions depending on the type of computation:1. All computations without neighbor interaction are done on an equallysized subset on every node. The subset is selected by splitting the particle�eld into n parts for n nodes. A node also operates as a relay node forits subset. Information about a speci�c particle can always be found onits relay node.2. For computations with neighbor interaction all particles are sorted ac-cording to their positions into a grid with equally sized cells. These cellsare assigned to nodes in a way that every node holds the same numberof particles.The load balancing is good in both cases, because the computation takesabout the same time for every particle. For the case of very unbalanced com-putations we have the option to do load stealing between nodes to optimizethe load balancing.This approach reduces communication overhead and memory consump-tion because the particle information resides on one node as long as possible.Also, the computation of this domain decomposition is fast enough to be doneon the 
y. This is important, because the particle positions change after everyintegration step.Native SHMEM communication vs. MPI We measured the perfor-mance of the MPI code on the Cray T3E in Stuttgart and on the IBM SPsystem in Karlsruhe. On the SP we used 128 P2SC thin nodes with 120MHz.The tests showed, that the MPI implementation of the Cray T3E is worse



compared to the native SHMEM library (see �g. 2). Our tests show thatCray could easily improve the MPI performance by making better wrappersaround existing SHMEM calls. For some communication parts, such as gatheroperations of large arrays, the throughput decreased from about 300MB/s us-ing SHMEM to 120 MB/s using MPI. On the SP we achieved the expectedperformance of around 50MB/s. The whole code didn't perform this good onthe SP system, because the implementation is optimized for Cray T3E anddepends heavily on good communication bandwidth and latency in order toscale beyond 64 Processors.Results It proved to be bene�cial to use an abstraction layer, which allowsthe exchange of low level parts without changing the application to obtain thebest performance on a given hardware platform. In the previous projects thiswas a procedural abstraction layer. For our current developments we choosean object oriented programmingmodel for this abstraction. The crucial pointfor the parallelization is a smart domain decomposition optimized for both,the machine and the problem. An object oriented modeling of domain de-compositions, which we want to describe in a later chapter is therefor one ofthe requirements for our parallel environment.
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implementations and the missing integration of modern C++ concepts liketemplates and the support for the standard template library.To support object-orientation for parallel programming, we extended ourmodel of parallel computing with threads on machines with distributed mem-ory to C++ objects. In this model, an object { extended for architectures withdistributed memory { is the basic entity of data communication. Objects canbe migrated between di�erent address spaces and replicated to improve per-formance. Migration and replication can be done explicitly by the user. Forspeci�c applications-domains, for example particle codes, we intend to pro-vide tailored load-balancing components which free the user from explicitlyspecifying the data distribution. The methods for guaranteeing consistencyare based on the well-known consistency protocols from distributed sharedmemory. In addition to this, objects support asynchronous remote methodinvocations. This corresponds to the asynchronous remote procedure call inour former approach, that is, a thread fork extended for machines with dis-tributed memory. Based on these facilities we plan to integrate some librarysolutions for a couple of common problems, for example automatic paral-lelization and load-balancing for independent data-parallel problems. Theselibraries will be application-independent (in di�erence to the higher-level li-braries described later, which support speci�c physical problem domains likeparticle simulations).To realize this model, we started implementing a basic layer for object-oriented message-passing. This layer can be used independently from thehigher-level layers. To keep it portable, it is designed to be easily implementedon di�erent low-level communication primitives. One implementation is ontop of MPI to support a broad range of parallel architectures. There also ex-ists an UDP-based version for test runs in a local environments without MPIsupport. Currently we are porting the library to the Cray T3E to run perfor-mance tests. Due to the bad MPI performance on the Cray T3E (see �g. 2,we will also implement a native Cray SHMEM based version for productionruns on this platform.To simplify the migration from procedural codes written in MPI, thefunctions and methods are very similar to the MPI calls as far as suitablefor the object-oriented interface. The main focus lied on extending the MPIfunctionality to objects without losing type-safety and the full integrationsof the STL, i.e. transferring STL containers as well as using iterators for sendand receive calls. To support the higher-level layers the library had to beprogrammed thread-safe.The user interface for the object-oriented message-passing is straightfor-ward with Communicator objects, send- and receive-methods. Composite ob-jects like STL containers, arrays or user objects are decomposed into basictypes by an overload resolution/traits technique [9]. Therefore, the user hasnot to deal with the unattractive concept of MPI data types, without loosingtype-safety. To send and receive objects, the user has to provide serialize anddeserialize methods, specifying how an object can be broken in components.



To minimize the communication overhead and prevent writing unnecessaryserializer methods, objects with a trivial copy constructor can be handleddirectly by the library. We are also working an a code preprocessor whichwill generate the serializer methods for most objects automatically. Further-more, note that the techniques used for sending objects and other C++ datatypes over the net, can be used without modi�cation to implement persistentobjects and application-level check-pointing.A message-passing based version of an object-oriented SPH code will beour �rst test application. Based on these experiments, we plan to implementthe higher-level layers by the end of this year. A portable object-orientedthread library will be integrated in the near future.4 Towards object-oriented parallel SPH4.1 Design PatternsWe cannot ignore the demand for programming in C or FORTRAN. To pro-vide simply an implementation in C++ will not be accepted by our projectpartners. We had to �nd a way to write down our solutions in a "Meta-Language". Using Design Patterns serves this purpose best. We have an easyto understand way to document our solutions that is not bound to any pro-gramming language. Writing the design patterns in UML, we can use toolsto implement the documented Design Patterns in e.g. C++ (almost) auto-matically.As a �rst step towards an object-oriented SPH program, we used an easyto parallelize Monte Carlo simulation of the pulsar HER-X1. Looking at theproblem as a programmer the Monte Carlo simulation and the SPH simula-tion are similar, because they are both particle simulation methods (in thecase of the Monte Carlo simulation the particles are photons).In the following we want to give an overview over the design patterns weused. The names for the patterns are taken from the Design Pattern bookby E. Gamma (see [8]), but our patterns might di�er from those in the book(we still need to give names to our patterns).Composite Pattern for Domain-Decomposition Domain decomposition is themethod used to parallelize particle simulations like SPH. The simulation areaof all particles is decomposed into separate simulation-domains. The domainconsists of particle lists that are being used to evaluate the equations. Sincethe particles interact, information must 
ow between the domains.The main problem with the domains is the communication between thedomains, and how to update the particle lists in each domain during thesimulation.To describe the solution for this problem, we used a pattern similar to thecomposite design pattern. The general behavior common to all simulation-domains, the ability to communicate with other domains, is de�ned in the



abstract root-class SimulationArea (see �g. 3). A concrete simulation areawill inherit the basic communication methods from this parent class, andchange the implementation to its own needs.Using this pattern, you can write simulation programs with compatiblesimulation sub-domains without the need to rewrite the communication be-tween the di�erent simulation-domains. To parallelize a simulation build us-
forall g in children

g.comunicate();

Client

list of neighbours

Simulation Area

Simulation Area
Concrete

del(SimulationArea)

communicate()

add(SimulationArea)

del(SimulationArea)

communicate()

add(SimulationArea)Fig. 3. Design Pattern used for Domain-Decompositioning the Domain-Decomposition, we make the SimulationArea root-class in-herit from a class similar to a Thread-class, so that all simulation-area objectsbecome active objects. (Active in the sense, that these objects run concur-rently).Iterator Pattern to step through neighbor-lists The iterator pattern is usedto step through dynamic lists of neighbor simulation areas. This pattern isalso available in C++ STL.Strategy Pattern to select a numerical algorithm The core functionality of asimulation of physical processes always are some numerical algorithms. Theselection of algorithms is stored in libraries for procedural languages like Cor FORTRAN. To keep the advantage of a �ne-grained selection of di�erentalgorithms we choose a strategy pattern for our numerical algorithms.A strategy always works on a speci�c context. As an example we usethe coordinate transformation of a vector (see �g. 4). Here the vector is thecontext of the strategy, and the di�erent transformations are the concretestrategies, that have to be implemented for a simulation. The basic function-ality is de�ned in the root-class for the coordinate transformation strategy. Inthis example the root-class contains the methods toGeneric and toSpecial.These methods transform the coordinates of a vector between a special co-ordinate system and a (pre-de�ned) generic coordinate system.
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Cylinder Spherical Other ...Fig. 4. Strategy Design Pattern for Coordinate TransformationsFacade Pattern to handle input parameters To handle user input parametersindependent of the objects used in the simulation, we use the facade pattern.A facade object collects all input, and marshals the parameters to the correctobject for this simulation.Factory Pattern to create the particles A Factory pattern can be used tocreate the particles for the simulation. Communicating a single particle willnot be e�cient, therefore container classes for particles are necessary. Par-ticles created using the ParticleFactory can now be collected, and put intocontainer classes (see �g. 5).
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Operation() Operation()Fig. 5. Factory pattern for particlesDocumentation Documenting the Design Patterns in a modern, easy to readway was achieved by using multi-frame HTML documents. Solutions that



are fun to read �nd generally better acceptance, even if there is no directimplementation in the favorite language of the programmer, e.g. FORTRAN.Also documenting the simplicity of our ready to use solutions motivates morephysicists to take a look at a new programming paradigm (some even take asecond look).Prototyping in JAVA We also tried using JAVA for prototyping. Implement-ing our design patterns written in UML is fast to do in JAVA. The JAVAprototypes cannot be used for the real problem (in our case because thereare no JAVA environments on Cray and NEC computers). The prototype isreally just a prototype.References1. Dav�e, R., Dubinski, J., Hernquist, L.: Parallel TreeSPH. New Astronomy volume2 number 3 (1997) 277{2972. Dubinski, J.: A Parallel Tree Code. Board of Studies in Astronomy and Astro-physics, University of California, Santa Cruz (1994)3. Lucy, Leon B.: A Numerical Approach to Testing the Fission Hypothesis. As-tron. J volume 82 (1977) 1013{19244. Warren, S. Michael, Salmon, K. John: A portable parallel particle program.Comp. Phys. Comm. volume 87 (1995) 266{2905. Bubeck, T., Hipp, M., H�uttemann, S., Kunze, S., Ritt, M., Rosenstiel, W., Ruder,H., Speith, R.: Parallel SPH on CrayT3E and NECSX-4 using DTS High Per-formance Computing in Science and Engineering '98, Springer (1999) 396{4106. Gingold, R. A., Monaghan, J. J.: Smoothed particle hydrodynamics: theory andapplication to non-spherical stars Mon. Not. R. astr. Soc. volume 181 (1977)375{3897. Wilson, Gregory V.,Lu, Paul: Parallel Programming using C++ The MIT Press,Cambridge (1996)8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements ofreusable object-oriented software Addison-Wesley (1995)9. Programming languages { C++. International Standard 14882. ISO/IEC (1998)



Using Collections to Structure Parallelism andDistributionPascale Launay and Jean-Louis PazatIRISA, Campus de Beaulieu, F35042 RENNES CedexPascale.Launay@irisa.fr, Jean-Louis.Pazat@irisa.frhttp://www.irisa.fr/CAPS/PROJECTS/DoAbstract. The aim of the Do! project is to ease the task of program-ming scienti�c parallel and distributed applications using Java. We usecollections to provide an uni�ed way to structure parallelism and dis-tribution. We have de�ned a parallel framework, based on collections,to write parallel applications in a centralized fashion (as if all objectswere on one single host) and we provide \distributed" collections for dis-tributed execution of these applications (objects are mapped on distincthosts). We have developed both static collections (arrays) and dynamiccollections (lists) for this purpose. This framework has been targeted tothe Java language and runs on any standard Java environment.1 IntroductionTwo main approaches are used to introduce parallelism and distribution inobject-oriented scienti�c applications: task parallelism [1,7] and data paral-lelism [4, 6]. Our project integrates both approaches:Data parallelism has been integrated in an object oriented language through theuse of collections: collections are large object aggregates, responsible for the stor-age and the accesses to their elements. The data parallel model is well suited toexpress global operations on large data aggregates. This model has been widelyused in many scienti�c applications, but it does not allow a convenient descrip-tion of task parallelism which also exists in those applications. The collectionlibraries are usually restricted to static collections (arrays). We have used bothstatic and dynamic collections.Task parallelism has been introduced through the use of active objects. Usingcollections to store active objects allows us to structure parallelism and to pro-vide global distribution speci�cations.In section 2, we show how structured parallel constructs are introduced throughthe use of collections. We present the use of distributed collections to run parallelapplications in distributed environnements in section 3. Finally, we conclude insection 4 with the performance concerns, the current status of our project, andthe extensions we are planning to develop.



2 Collections and parallelismWe introduce parallelism through active objects: an active object has its own se-quential activity and private attributes. A parameter can be passed to our activeobjects that can be used for communications and synchronizations with otherobjects. Active objects are implemented in our framework using Java Threads.We introduce structured parallel constructs through collections. We express globaloperations on collections through operators and we have de�ned a parallel frame-work, represented by a Par class (or a descendant), implementing a parallelmodel (parallel construct).2.1 Global operations on collectionsIterators and operators We use the operator design pattern [5] (�gure 1)to express global operations on collections. Accesses and global operations overcollection elements are separate entities: iterators and operators. From a collec-tion, an iterator provides a sequence of elements to the operator, that processeselements. An operator accesses elements independently from the collection andcan use iterators to traverse collections in various ways. There are several kindsof operators, depending on:{ how many sequences they need as entry. Default operators process elementsfrom one sequence; Cross operators process elements from two sequences,applying operations to elements from one sequence with the correspondingelements from the second one;{ if they give a result or not. The result may be a single element (Reduceoperator, for example) or a sequence of elements (Filter operator, for ex-ample). Operators giving a sequence of elements can be viewed as iterators,and composed with other operators.
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run(it.item());Fig. 1. The operator design patternThe operator design pattern has been designed in order to model computa-tions over large data structures. It provides us with a modular way to express



parallelism and distribution. We use collections to store active objects (JavaThreads) and we de�ne operations over active objects (activation, synchro-nization) through the operator design pattern.Robust iterators and reactive operators In a concurrent environment, it isimportant to ensure that iterators support insertions and removals in collectionsduring a traversal; such iterators are called robust iterators [2]: \a robust iteratorensures that insertions and removals won't interfere with traversal, and it does itwithout copying the collection". By using iterators in the operator design pattern,robustness can be managed both by the iterator and by the operator: in somecases, the iterator can react properly towards an insertion or a removal in thecollection, but in other cases the operator has more information to manage themodi�cation correctly.Moreover, if the operation duration is not limited to the collection traversal,it may be important to react to a modi�cation in the collection even after the endof the traversal. For example, an operator whose purpose is to display a graphicalrepresentation of a collection should be able to react properly to a modi�cationin the collection during the whole collection visualization, and modify properlythe representation being displayed. We call such operators reactive operators.
OperatorTASK

EventListener

EventSource
EventObject

addEventListener

removeEventListener

processEventο eventPerformed

run ο

EVENTLISTENER

EVENTSOURCE
EVENTOBJECT

addEventListener

removeEventListener

ο processEvent eventPerformed

run ο

listeners

listenerssource

new EventObject(this,listeners).start();

Iterator itL = listeners.items();
for (itL.start(); !itL.exhausted;

itL.next())
itL.item().eventPerformed();

call
start

run

stop
join

Fig. 2. The event patternWe have implemented a general solution to manage robustness in a con-current environment as well as reactivity for operators, relying on an asyn-chronous event pattern, based upon the observer design pattern [2] (�gure 2).The event pattern's main components are the source (EventSource) that gen-erates events, and the listener (EventListener) that reacts to events.Collections and iterators are sources, iterators and operators are listeners(�gure 3): when a modi�cation occurs in a collection, an event is generated



and thrown to iterators operating on that collection. An iterator catching suchan event can either manage it properly or throw it to the operator using thatiterator: if the element has already been traversed, the iterator throws the eventto the operator that takes it into account. As an example, if we de�ne an operatorto compute the sum of integers stored in a collection, and if modi�cations in thecollection are allowed during the computation, it is important that the operatortakes modi�cations in the collection into account: if an integer that has alreadybeen computed is removed from the collection, the operator has to subtract theinteger's value before returning.
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processEvent();Fig. 3. Robust iterators and reactive operators2.2 Collections to structure parallelismActive objects Active objects are objects having their own sequential activ-ity: when using active objects, several control 
ows run concurrently throughdi�erent objects, leading to inter-object concurrency; when active objects accessother objects of the program, they can communicate (through shared objects),leading to intra-object concurrency when concurrent control 
ows run into a sin-gle shared object. We have implemented active objects using Java Threads.Active objects are represented by the Task class (�gure 2); they are activatedsynchronously or asynchronously through method invocation (call or start).It is possible to stop their activity, or wait for their termination (stop or join).Active objects communicate through shared objects, passed as parameters atobject activation. The shared object's type is the generic type Object, so thesynchronization mechanisms use to manage shared accesses are those providedby the Java language ([3], chapter 17)Parallel constructs Parallelism is encapsulated in task collections, that storeactive objects. A �rst traversal of a task collection asynchronously activates each
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3 Collections and distributionWe introduce distribution through the mapping of objects on distinct hosts(jvms). We process remote creations to map objects on hosts using runtimeclasses, and remote method invocations to implement communications betweenremote objects using the Java rmi. Because using Java rmi requires importantmodi�cations in the code of classes, we provide seamless location of objectsthrough code transformations of classes (accessible classes).We structure distribution through distributed collections (collections which ele-ments are located on distinct hosts). The distribution of collections is describedin a speci�c class called a distribution layout manager (dlm): dlms encapsulateall computations depending on the type of distribution (owner retrieving andkey transformation).3.1 Seamless location of objects through classes transformationsWe transform components in order to allow transparent locations of objects:transparent mapping of objects on remote hosts, and transparent communica-tions with objects from remote hosts. The only classes we transform are thosethat can be accessed from remote hosts: they are marked by the programmer asaccessible (they implement the Accessible interface). From an accessible class,we generate three main classes:{ the proxy class, that catches the clients requests and sends them to theimplementation class or to the static class;{ the implementation class contains all instance attributes and method imple-mentations;{ the static class contains all static attributes and method implementations.To instanciate an accessible class, the programmer gives an additional param-eter to the constructor, identifying the accessible object location. A proxy objectis created localy, and an implementation object is created remotely, depending onthe accessible object location (through the remoteNewmethod). Their is only oneinstance of the static class shared by all proxy objects (the staticNew methodimplements this single instance creation). The proxy, implementation and staticobjects communicate using Java rmi.Figure 6 shows the transformation of an accessible class. All classes andinterfaces in grey are classes from the Java rmi packages.3.2 Distributed collections to structure distributionDistributed collections are collections which elements are located on distincthosts. Distributed collections manage access to accessible distributed elements.The distribution of collections is described in a speci�c class called a distribu-tion layout manager (dlm): dlms encapsulate all computations depending on
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{ describes the objects' mapping by associating appropriate dlms to collec-tions,{ marks objects that can be accessed from remote hosts as accessible (thedistributed collections' elements, for example).Then, a preprocessor:{ transforms accessible classes to allow seamless location of accessible objects;{ adds a parameter for the distributed collection elements' creation, accordingto the collection dlm, to identify the object location;{ replaces non distributed collections by distributed collections4 Performance concerns, current status and future workPerformances are one of the main concerns in scienti�c computing. Our environ-ment is targeted to the Java language, using Threads and rmi. The currentimplementation of the Sun jvm is not satisfying in terms of performances, butsome environments now available will make it possible to use Java for high per-formance computing [8, 9]. The over-cost of using our framework and our codetransformations for accessible classes is negligible.A �rst release of the Do! environment is currently available online (http://www.irisa.fr/CAPS/PROJECTS/Do), comprising arrays and static dlms. Asecond release integrating lists and dynamic dlms has already been implemented,and will be available soon. We have implemented some applications using our en-vironment and we intend to use high performance Java environments in a futurerelease. A foreseen extension is to include object migration, in order to allow loadbalancing during active objects execution. This technique will also be ported toa corba environment, Java being used only as a coordination language.References1. D. Caromel, W. Klauser, and J. Vayssi�ere. Towards seamless computing and meta-computing in Java. Concurrency Practice and Experience, 10(11{13):1043{1061,September{November 1998.2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Object-Oriented Software. Addison Wesley, 1994.3. J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. The Java[tm]Series. Computer and Engineering Publishing Group, 1996.4. J.-M. J�ez�equel, F. Guidec, and F. Hamelin. Parallelizing object oriented softwarethrough the reuse of parallel components. In Object-Oriented Systems, volume 1,pages 149{170, 1994.5. J.-M. J�ez�equel and J.-L. Pacherie. Parallel operators. In Pierre Cointe, editor, 10thEuropean Conference on Object-Oriented Programming (ECOOP'96), volume 1098of Lecture Notes in Computer Science, pages 275{294, Linz, Austria, July 1996.Springer Verlag.6. E. Johnson, D. Gannon, and P. Beckman. HPC++: Experiments with the parallelstandard template library. In 11th International Conference on Supercomputing,pages 124{131. ACM Press, July 1997.
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An Agent-Based Design for Problem SolvingEnvironmentsDan C. Marinescu(dcm@cs.purdue.edu)Department of Computer SciencesPurdue UniversityWest Lafayette, IN 47907, USAAbstractIn this paper we examine alternative means to exploit the advantagesof code mobility, object-oriented design, and agent technology for highperformance distributed computing. We describe an infrastructure forProblem Solving Environments based upon software agents.1 IntroductionA number of new initiatives and ideas for high performance distributed comput-ing have emerged in the last few years. Object-oriented design and programminglanguages like Java open up intriguing new perspectives for the development ofcomplex software systems capable to simulate physical systems of interest tocomputational sciences and engineering. The Java Grande initiative aims toadd new constructs and to support optimization techniques needed to make theJava language more expressive and e�cient for numerical simulation. If success-ful, this e�ort will lead to more robust scienti�c codes and increased programmerproductivity.An important side e�ect of the use of Java in scienti�c computing is codemobility. This brings us to another signi�cant development, computing grids.Informally, a computing grid is a collection of autonomous computing platformswith di�erent architectures, interconnected by a high-speed communication net-work. Computing grids are ideal for applications that have one or more of thefollowing characteristics: (a) are naturally distributed, data collection pointsand programs for processing the data are scattered over a wide area network,(b) need a variety of services distributed over the network, (c) have occasionalor sustained needs for large amounts of computing resources e.g. CPU cycles,large memory, vast amounts of disk space, (d) bene�t from heterogeneous com-puting environments consisting of platforms with di�erent architectures, (e)require a collaborative e�ort from users scattered over a large geographic area.



Many problems in computational sciences and engineering could bene�t fromthe use of computing grids. Yet, scienti�c code mobility, a necessary conditionfor e�ective use of heterogeneous computing environments is a dream waitingto materialize. Porting a parallel program from one system to another, with adi�erent architecture and then making it run e�ciently are tedious tasks. Thusthe interest of the high performance distributed computing comunity for Java.We are cautiously optimistic regarding both aspects outlined above. At thetime of this writing, Java code is still ine�cient, it runs 10 to 20 times slowerthan C code. It is rather unlikely that the Java language will ever include acomprehensive support for numerical computations because scienti�c and engi-neering applications represent only a relatively small fraction of the intendedaudience for Java. Even if Java becomes the language of choice for writing sci-enti�c and engineering codes, we still have a large body of legacy codes writtenalong the years and an "ab inito" approach, re-writing them in Java is unlikely.We need also to keep in mind that often, parallel codes require new algorithmsto execute e�ciently, thus code mobility in a heterogeneous system has inher-ent limitations. Resource management in a network of autonomous nodes andsecurity pose formidable challenges that need to be addressed before computinggrids could become a reality.In this paper we examine alternative means to exploit the advantages of codemobility, object-oriented design, and agent technology for high performancedistributed computing, at a time when Java Grande and computing grids areonly a promise. To bridge the gap between promise and reality we propose todevelop an infrastructure for Problem Solving Environments, PSEs, based uponsoftware agents.To use a biological metaphor [2], software agents form a nervous system andperform command and control functions in a Problem Solving Environment.The agents themselves relay on a distributed object system to communicatewith another. Though the agents are mobile, some of the components of thePSE are tightly bound to a particular hardware platform and cannot be movedwith ease.In this paper we �rst review basic requirements for designing complex sys-tems like Problem Solving Environments and the role of software agents, then weintroduce a software architecture that has the potential to facilitate the designand implementation of PSE and to make the resulting systems less brittle.The basic design philosophy of the Bond system is described in [1], [?] [2],the security aspects of Bond are presented in [8], an application of Bond to thedesign of software agents for a network of PDE solvers is discussed in [11] andan in depth view of the design of Problem Solving Environments using Bond isgiven in [10]. The Bond system was released in mid March 1999.



2 Agents, Problem Solving Environments, andSoftware CompositionSoftware agents seem to be at the center of attention in the computer sciencecommunity. Yet di�erent groups have radically di�erent views of what softwareagents are, [6], what applications could bene�t from the agent technology, andmany have a di�cult time sorting out the reality from �ction in this rapidlymoving �eld and accepting the representation that software agents provide a"magic bullet" for all problems. The concept of an agent was introduced by theAI community a decade ago, [3]. An AI agent exhibits an autonomous behaviorand has inferential abilities. A considerable body of work is devoted to agentsable to meet the Turing test by emulating human behavior [9]. Such agents areuseful for a variety of applications in science and engineering e.g. deep spaceexplorations, robots, and so on.Our view of an agent is slightly di�erent [1]. For us a software agent isan abstraction for building complex systems. An agent is an active mobileobject that may or may not have inferential abilities. Our main concern is todevelop a constructive framework for building collaborative agents out of ready-made components and to use this infrastructure for building complex systemsincluding Problem Solving Environments, PSEs. The primary function of aProblem Solving Environment is to assist computational scientists and engineersto carry out complex computations involving multiple programs and data sets.We use the term work
ow and metaprogram interchangeably, to denote boththe static and the dynamic aspects of this set of computations. We argue thatthere are several classes of high performance computing applications that cangreatly bene�t from the use of agent-based PSEs:� Naturally distributed applications,� Data intensive applications.� Applications with data-dependent or non-deterministic work
ows.� Parallel applications based upon domain data decomposition and legacycodes.Many problems in computational science and engineering are naturally dis-tributed, involve large groups of scientists and engineers, large collections of ex-perimental data and theoretical models, as well as multiple programs developedindependently and possibly running on systems with di�erent architectures. Ma-jor tasks including coordination of various activities, enforcing a discipline inthe collaborative e�ort, discovering services provided by various members of theteam, transporting data from the producer site to the consumer site, and otherscan and should be delegated to a Problem Solving Environment. The primaryfunctions of agents in such an environment are: scheduling and control, resourcediscovery, management of local resources, use-level resource management, andwork
ow management.



Data-intensive applications are common to many experimental sciences andengineering design applications. As sensor-based applications become pervasive,new classes of data-intensive applications are likely to emerge. An importantfunction of the PSE is to support data annotation. Once metadata describingthe actual data is available, agents can automatically control the work
ow, allowbacktracking and restart computations with new parameters of the models.Applications like climate and oceanographic modeling often relay on manydata collection points and the actual work
ow depends both upon the availabil-ity of the data and the con�dence we have in the data. The main function ofthe agents in such cases is the dynamic generation of the work
ows based uponavailable information.Last, but not least, in some cases one can achieve parallelism using sequen-tial legacy codes. Whenever we can apply a divide and conquer methodologybased upon the partitions of the data into sub-domains, solve the problem inde-pendently in each sub-domain, and then resolve with ease the eventual con
ictsbetween the individual workers we have an appealing alternative to code par-allelization. The agents should be capable to coordinate the execution andmediate con
icts.The idea of building a program out of ready-made components has beenaround since the dawn of the computing age, backworldsmen have practiced itvery successfully. Most scienti�c programs we are familiar with, use mathemat-ical libraries, parallel programs use communication libraries, graphics programsrely on graphics libraries, and so on.Modern programming languages like Java, take the composition process onestep further. A software component, be it a package, or a function, carries withitself a number of properties that can be queried and/or set to speci�c values tocustomize the component according to the needs of an application which wishesto embed the component. The mechanism supporting these functions is calledintrospection. Properties can even be queried at execution time. Re
ectionmechanisms allow us to determine run time conditions, for example the sourceof an event generated during the computation. The reader may recognize thereference to the Java Beans but other component architectures exists, Active Xbased on Microsoft's COM and LiveConnect from Netscape to name a few.Can these ideas be extended to other types of computational objects besidessoftware components, for example to data, services, and hardware components?What can be achieved by creating metaobjects describing network objects likeprograms, data or hardware? We use here the term \object" rather loosely, butlater on it will become clear that the architecture we envision is intimately tiedto object-oriented concepts. We talk about network objects to acknowledge thatwe are concerned with an environment where programs and data are distributedon autonomous nodes interconnected by high speed networks.Often the components are legacy codes that cannot be modi�ed with ease. Inthis case we can wrap around legacy programs newly created components calledsoftware agents. Each wrapper is tailored to the speci�c legacy application.Then interoperability between components is ensured by federation of agents.



3 An Infrastructure for Problem Solving Envi-ronmentsBond, [1], is a distributed-object, message-oriented system, it uses KQML [5],as a meta-language for inter-object communication. KQML o�ers a variety ofmessage types (performatives) that express an attitude regarding the contentof the exchange. Performatives can also assist agents in �nding other agentsthat can process their requests. A performative is expressed as an ASCII string,using a Common Lisp Polish-pre�x notation. The �rst word in the string is thename of the performative, followed by parameters. Parameters in performativesare indexed by keywords and therefore order-independent.The infrastructure provided by Bond supports basic object manipulation,inter-object communication, local directory and local con�guration services, adistributed awareness mechanisms, probes for security and monitoring functions,and graphics user interfaces and utilities.Shadows are proxies for remote objects. Realization of a shadow provides forinstantiation of remote objects. Collections of shadows form virtual networks ofobjects.Residents are active Bond objects running at a Bond address. A resident isa container for a collection of objects including communicator, directory, con-�guration, and awareness objects. Subprotocols are closed subsets of KQMLmessages. Objects inherit subprotocols. The discovery subprotocol allows anobject to determine the set of subprotocols understood by another object. Othersubprotocols, monitoring, security, agent control, and the property access sub-protocol understood by all objects.The transport mechanism between Bond residents is provided by a commu-nicator object with four interchangeable communication engines based upon:(a) UDP, (b) TCP, (c) Infospheres, (info.net), and (d) IP Multicast protocols.Probes are objects attached dynamically to Bond objects to augment theirability to understand new subprotocols and support new functionality. A secu-rity probe screens incoming and outgoing messages to an object. The securityframework supports two authentication models, one based upon username, plainpassword and one based upon theChallenge Handshake Authentication Protocol,CHAP. Two access control models are supported, one based upon the IP ad-dress (�rewall) and one based upon an access control list. Monitoring probesimplement a subscription-based monitoring model. An autoprobe allows loadingof probes on demand.The distributed awareness mechanism provides information about other resi-dents and individual objects in the network. This information is piggy-backed onregular messages exchanged among objects to reduce the overhead of supportingthis mechanism. An object may be aware of objects it has never communicatedwith. The distributed awareness mechanism and the discovery subprotocol re-
ect our design decision to reduce the need for global services like directoryservice and interface repositories.Several distributed object systems provide support for agents. Infospheres



(//www.infospheres.caltech.edu/) and Bond are academic research projects,while IBM Aglets (www.trl.ibm.co.jp/aglets/index.html) and ObjectspaceVoyager (//www.objectspace.com) are commercial systems.A �rst distinctive feature of the Bond architecture, described in more detailin [1] is that agents are native components of the system. This guarantees thatagents and objects can communicate with one another and the same commu-nication fabric is used by the entire population of objects. Another distinctivetrait of our approach is that we provide middleware, a software layer to facilitatethe development of a hopefully wide range of applications of network computing.We are thus forced to pay close attentions to the software engineering aspectsof agent development, in particular to software reuse. We decided to providea framework for assembly of agents out of components, some of them reusable.This is possible due to the agent model we overview now.We view an agent as a �nite-state machine, with a strategy associated withevery state, a model of the world, and an agenda as shown in Figure 1. Uponentering a state the strategy or strategies associated with that state are activatedand various actions are triggered. The model is the "memory" of the agent,it re
ects the knowledge the agent has access to, as well as the state of theagent. Transitions from one state to another are triggered by internal conditionsdetermined by the completion code of the strategy, e.g. success or failure, or bymessages from other agents or objects.
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Figure 1: The abstract model of a Bond AgentThe �nite-state machine description of an agent can be provided at mul-



tiple granularity levels, a course-grain description contains a few states withcomplex strategies, a �ne-grain description consists of a large number of stateswith simple strategies. The strategies are the reusable elements in our softwarearchitecture and granularity of the �nite state machine of an agent should bedetermined to maximize the number of ready made strategies used for the agent.We have identi�ed a number of common actions and we started building a strat-egy repository. Examples of actions packed into strategies are: starting up oneor more agents, writing into the model of another agent, starting up a legacyapplication, data staging and so on. Ideally, we would like to assemble an agentwithout the need to program, using ready-made strategies from repositories.Another feature of our software agent model is the ability to assemble anagent dynamically from a "blueprint", a text �le describing the states, thetransitions, and the model of the agent. Every Bond-enabled site has an "agentfactory" capable to create an agent from its blueprint. The blueprint can beembedded into a message, or the URL of the blueprint can be provided to theagent factory. Once an agent was created, the agent control subprotocol can beused to control it from a remote site.In addition to favoring reusability, the software agent model we propose hasother useful features. First, it allows a smooth integration of increasingly com-plex behavior into agents. For example, consider a scheduling agent with amapping state and a mapping strategy. Given a task and a set of target hostscapable to execute the task, the agent will map the task to one of the hosts sub-ject to some optimization criteria. We may start with a simple strategy, selectrandomly one of the target hosts. Once we are convinced that the schedulingagent works well, we may replace the mapping strategy with one based upon aninference engine with access to a database of past performance. The schedulingagent will perform a more intelligent mapping with the new strategy. Second,the model supports agent mobility. A blueprint can be modi�ed dynamicallyand an additional state can be inserted before a transition takes place. Forexample a "suspend" new state can be added and the "suspend" strategy beconcatenated with the strategy associated with any state. Upon entering the"suspend" state the agent can be migrated elsewhere. All we need to do is sendthe blueprint and the model to the new site and make sure that the new sitehas access to the strategies associated with the states the agent may traversein the future. The dynamic alteration of the �nite state machine of an agentcan be used to create a "snapshot" of a group of collaborating agents and helpdebug a complex system.We have integrated into Bond the JESS expert shell developed at SandiaNational Laboratory as a distinct strategy able to support reasoning. Bondmessages allow for embedded programs written in JPython and KIF.Agent security is a critical issue for the system because the ability to as-semble and control agents remotely as well as agent mobility, provide unlimitedopportunities for system penetration. Once again the fact that agents are na-tive Bond objects leads to an elegant solution to the security aspect of agentdesign. Any Bond object, agents included, can be augmented dynamically witha security probe providing a defense perimeter and screening all incoming and



outgoing messages.The components of a Bond agent shown in Figure 1 are:� The model of the world is a container object which contains the infor-mation the agent has about its environment. This information is storedin the form of dynamic properties of the model object. There is no re-striction of the format of this information: it can be a knowledge base oran ontology composed of logical facts and predicates, a pre-trained neu-ral network, a collection of meta-objects or di�erent forms of handles ofexternal objects (�le handles, sockets, etc).� The agenda of the agent, which de�nes the goal of the agent. The agendais in itself an object, which implements a boolean and a distance functionon the model. The boolean function shows if the agent accomplished itsgoal or not. The distance function may be used by the strategies to choosetheir actions.� The �nite state machine of the agent. Each state has an assignedstrategy which de�nes the behavior of the agent in that state. An agentcan change its state by performing transitions. Transitions are triggeredby internal or external events. External events are messages sent by otheragents or objects. The set of external messages which trigger transitionsin the �nite state machine of the agent de�nes the control subprotocol ofthe agent.� Each state on an agent has a strategy de�ning the behavior of the agentin that state. Each strategy performs actions in an in�nite cycle until theagenda is accomplished or the state is changed. Actions are consideredatomic from the agent's point of view, external or internal events interruptthe agent only between actions. Each action is de�ned exclusively by theagenda of the agent and the current model. A strategy can terminate bytriggering a transition by generating an internal event. After the transitionthe agent moves in a new state where a di�erent strategy de�nes thebehavior.All components of the Bond system are objects, thus Bond agents can beassembled dynamically and even modi�ed at runtime. The behavior of an agentis uniquely determined by its model (the model also contains the state whichde�nes the current strategy). The model can be saved, transferred over thenetwork.A bondAgent can be created statically, or dynamically by a factory objectbondAgentFactory using a blueprint. The factory object generates the com-ponents of the agent either by creating them, either by loading them frompersistent storage. The agent creation process is summarized in Figure 2
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Figure 2: Creating an agent remotely using an agent factory. (1) The bene�ciaryobject sends a create-agent message to the agent factory (2) The blueprint isfetched by the agent factory from a repository or extracted from the message (3)The strategies are loaded from the strategy database (4) The agent is created(5) The id of the agent is communicated back to the bene�ciary, and (6) Thebene�ciary object controls the new agent4 ConclusionsBond is a Java written, agent-based, distributed-object system we have devel-oped for the past few years. Bond provides a framework for interoperabilitybased upon (1) metaobjects that provide information about network objects,and (2) software agents capable to use the information about network objectsand carry out complex tasks.Some of the components we propose e.g. the agent framework, the schedulingagents, the monitoring and security frameworks, are generic and we expect thatthey will be included in other applications like distance learning, or possiblyelectronic commerce.The design of a Problem Solving Environment based upon a network of PDEsolvers is one of the applications of Bond that illustrates the advantages of acomponent based architecture versus a monolithic design of a PSE.A beta version of the Bond system was released in mid March 1999 un-der an open source license, LPGL, and can be downloaded from our web site,http://bond.cs.purdue.edu.Acknowledgments
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An Object-Based Metasystem forDistributed High Performance Simulationand Product RealizationVictor P. Holmes, John M. Linebarger,David J. Miller, and Ruthe L. VandewartSandia National LaboratoriesP. O. Box 5800Albuquerque, New Mexico, USA, 87185vpholme@sandia.govhttp://www.pdo.sandia.gov/SI.htmlAbstract. The Simulation Intranet/Product Database Operator (SI/PDO)is a cadre system which comprises one element of a multi-disciplinary dis-tributed and distance computing initiative known as DisCom2 at San-dia National Laboratories. The SI/PDO is an architecture for satisfyingSandia's long term goal of providing integrated software services for high�delity full physics simulations in a high performance, distributed, anddistance computing environment. This paper presents the initial require-ments, design, and implementation of the SI/PDO which is based on agrid-like network computing architecture. The major logical elements ofthe architecture include the desktop, distributed business objects, anddata persistence. . . .1 IntroductionThe purpose of the Simulation Intranet/Product Database Operator (SI/PDO)architecture is to satisfy Sandia National Laboratories' long term goal of provid-ing designers and analysts an integrated set of product realization and virtualprototyping services which include high �delity simulations in a high perfor-mance (HP), distributed, and distance computing environment. The initial fo-cus of the architecture is on the development of a distributed object frameworkwhich allows users Web-based desktop access to applications that require highperformance distributed resources for modeling, simulation, analysis, and visu-alization. This framework satis�es the following characteristics:{ works within a heterogeneous, distributed computing environment,{ is object-oriented and based on open standards,{ exhibits network transparency, containing components which are decoupled,{ makes new and existing applications appear as distributed object services,{ provides for sequencing, launching, and monitoring of sets of applications,{ coordinates archival and retrieval of information,{ provides a consistent, integrated operator interface.



1.1 Architectural ThrustsThere are three main thrusts addressed by the �rst implementation of this frame-work. First and foremost, the framework architecture provides end users trans-parent desktop access to Sandia's Computational Plant (CPLANT), a massivelyparallel computing resource constructed of commodity parts. This involves in-tegration of distributed object computing and Web-based computing with HPcomputing, areas which have in the past taken separate research paths andnow are merging to create a component-based architecture for modeling, simu-lation, and analysis. Technologies being employed include object request brokers(ORBs), object-oriented databases (ODBMS), and Java Beans, coupled with ap-plications using the Message-Passing Interface (MPI) and parallel visualizationtechniques.The second aspect of the framework architecture involves integrating visual-ization with analysis to monitor progress and potentially inject computationalsteering. HP computing normally involves long running batch-oriented computa-tions followed by complex postprocessing to �nally visualize the results. In somecases, the analysis has to be resubmitted with modi�ed component meshes andparameters. In the SI/PDO model, the framework can provide image snapshotsof simulation time steps to the desktop such that users can determine if theanalysis is on track without having to wait until it is completed. Eventually, theframework will expand upon this spyglass concept and allow the user to inter-rupt an analysis to tweak the mesh or parameters, and ultimately use the powerof the CPLANT clusters to perform real-time parallel visualization of data as itis generated.The third thrust involves knowledge management through a concept knownas the Product Database Operator or PDO. This concept includes the abilityto capture large quantities of data generated by these analyses in an objectrepository, classify this data into a taxonomy which is consistent with the Lab-oratories' business model, and then make relevant information available to theusers to solve new problems and achieve new insights, particularly in the areaof nuclear component stockpile stewardship.1.2 Related Work in Distributed FrameworksAlthough this area of research is fairly new, numerous framework architecturesare being developed which contribute to the advancement of the technology. Inaddition, with the growing popularity of the Java programming language, manyresearchers are pursuing Java-based e�orts to establish software infrastructuresfor distributed and distance computing. These include ATLAS [1], Charlotte[2], ParaWeb [3], Popcorn [4], and Javelin [5]. All of these Java-based projectsattempt to provide capabilities for parallel applications in heterogeneous environ-ments. The use of Java for building distributed systems will continue to 
ourishas Internet-based programming becomes more viable. However, the more estab-lished approaches incorporate Java-based interfaces but do not rely entirely onthis language platform. These include GLOBUS [6], Legion [7], CONDOR [8],and WebOS [9].



2 Component Model DescriptionThe three thrusts discussed above are realized within a grid-based network com-puting architecture model consisting of desktop clients, distributed business ob-jects, and data persistence. The following sections discuss the general charac-teristics of each of these elements. A subset of these characteristics has beenimplemented within the prototype SI/PDO metasystem.2.1 Web TopA web browser is viewed as the user's primary desktop operating environment.The browser provides access to applications and services required to accomplishlaboratory missions. The browser component of a grid-based architecture is con-cerned with aspects of presentation without knowledge of business rules. It pro-vides a user-centered, document-centered, coarse-grained, stateless world view.In the context of the SI/PDO, the browser displays the web pages which provideaccess to modeling, simulation, and analysis capabilities. Java Bean componentsare used to represent these applications and services. An applet serves as thecontainer or bean box for graphically programming a simulation sequence, con-�guring each simulation component in the sequence (customizers, introspection),invoking the sequence (event model), and monitoring its progress. This approachprovides a component-based architecture which transforms legacy applicationsinto application components, or business objects.2.2 Distributed Access to Applications and ServicesTransparent connections and communicationmust be provided between the WebTop and the distributed services. This messaging element of the grid architec-ture provides the notion of distributed blobs of computing resources which areavailable to the SI/PDO. These resources may be local to a site or remotelyaccessed, and the messaging interface makes them appear as if they are on theuser's local machine. The initial implementation uses the Java Bean event modelcoupled with event model adapters which can potentially accommodate variousprotocols. These adapters provide the transparent mechanisms for browser-basedbeans to connect and communicate with the distributed applications and ser-vices. Currently the adapters are implemented using CORBA and IIOP.2.3 Modeling, Simulation, and Analysis Business ObjectsThe business objects in the architecture are the legacy codes and new codes pro-vided by Sandia scientists and commercial vendors which implement the servicesrequired by the Laboratories' missions and are accessed through the SI/PDO.These applications should be presentation and data storage independent, usuallyhave connections with other business objects, and may need to store and retrieveinformation from the persistent store. As opposed to the Web client, businessobjects provide an application-centered, �ne-grained, stateful world view.



To achieve the concept of business objects, most legacy codes require wrap-pers which handle the distributed object aspects of their use. The encapsulationstrategy should be a component-�rst approach which involves performing a do-main analysis to generate an object model, identifying public interfaces for thisobject model, and encapsulating the legacy application to populate the speci�cfunctions of this public interface. A complete wrapper should perform connectionprotocol management, data translation and information processing, error detec-tion and recovery, and environment management, which includes insulation ofthe users from changes and upgrades.2.4 Knowledge ManagementThe �nal element of the architecture, data persistence, should ultimately takethe form of a knowledge management system. The value of Sandia's informationassets requires more than just the ability to store and retrieve them in a dis-tributed fashion. It should also be possible to dynamically match information tospeci�c processes or unknown situations and leverage that information to achievenew results and insights into mission-related problems. Some key elements of aknowledge management system include distributed object databases and associ-ated tools for legacy data conversion, knowledge creation analysis, collaboration,web content management, intelligent agent implementation, and visualization.Functions which transform information into knowledge include capturing datain an object repository and organizing it into a taxonomy which re
ects theSI/PDO business model, the ability to make information available to a knowl-edge seeker, and the application of that knowledge to solve new problems.3 Architectural Component DesignA generalized pictorial representation of the architecture is shown in Figure 1.On the left is the desktop environment and on the right are the distributedcomputing resources which are available. A Java-based applet running insidethe browser provides a prototype desktop environment. The designer uses thiscommon desktop environment to con�gure, link together, and launch variousapplications, and each launched application transparently locates, connects to,or acquires the appropriate distributed resources for that application.For legacy codes, there are wrappers which allow older codes to becomenetwork-aware and behave as distributed object services. For new codes, theyshould be developed as network-based components from the start. The wrappersrepresent business objects. Sandia's business in this context includes applica-tions such as solid modeling, meshing, �nite element analysis, and visualization.Some codes execute on workstations and others are launched on HP massivelyparallel computers, depending upon the code's requirements and the users' needs.Finally, data persistence and knowledge management are represented as aPDO repository in Figure 1. Both the wrappers and the desktop are capableof communicating with the PDO repository. All distributed communication isperformed using CORBA.



Fig. 1. Generalized SI/PDO Architecture for Modeling and Simulation3.1 Desktop ComponentsUser Interface Applet. Figure 2. illustrates a prototype display of the WebTop interface. The desktop applet consists of three panels. The panel on the leftserves as a navigation panel and contains a tree of products and services availableto that user in the database. The panel on the right serves as a workspace panelwhere the user can interact with the various services. If an application has aGUI associated with it, this GUI can be displayed within the workspace panel.In addition, images being sent from a visualization service may be displayedhere as well. The bottom panel serves as a status display for messages from bothdesktop and distributed services.Beans for Applications and Services. A PDO bean provides desktop ac-cess to the database. It retrieves all of the PDO's from the database and buildsthe navigation tree. By selecting a product and service from the tree, the usergenerates an event which causes the PDO bean to instantiate an applicationor service bean. The names of the beans are available from the database, andtherefore, any new application or service can be plugged into the framework bycreating a bean for it which adheres to some minimal design patterns, and thenproviding meta-data for the database about the new application or service. Thecore framework code itself (applet and PDO bean) does not need to be modi-�ed. The creation of application and service beans allows the user to con�gure,



Fig. 2. Browser-Based Prototype User Interfacelaunch, monitor, and display results for modeling, simulation, and analysis tasksassociated with a product.Bean Adapters for DistributedCommunication. As discussed above, eachapplication bean will normally include an adapter class for distributed commu-nication. There are several advantages to using adapters. The adapter providesa nice encapsulation mechanism for communication code and makes the designmore object-oriented in nature. This encapsulation subsequently allows for mul-tiple implementations of the adapter without a�ecting the bean application code.Such multiple implementations allow for di�erent communication technologiesand protocols. Another advantage of an adapter is that it can be implementedas a separate thread which prevents bottlenecks from occurring on the desktop.When the user submits a request to the service, it can be carried out by thisthread without a�ecting the user's ability to perform subsequent desktop inter-actions. Finally, various multiplexing and queuing algorithms can be insertedinto adapters, allowing the user to batch requests to a service without having towait for one to complete before issuing another one.3.2 Application and Service ComponentsPersistent Services. An object-oriented database is a key component of theframework, maintaining information and methods for each product design andanalysis. A persistent CORBA interface to the database provides access from thedesktop or from applications which are running on workstation clusters or high



performance computers. This interface provides the operations needed to initiateuser sessions, launch applications and services, retrieve status, and manage theinformation generated.In addition, because some of the ORBs used by the framework may notprovide an automatic launching capability of application servers, it is necessaryfor the framework to provide this so that desktop users do not have to deal withsuch details. For the short term, this capability will be provided by a simpleCORBA-based Launch server which must be persistently active on machineswhere applications are executed. This server implements a simple IDL interfacecontaining a single launch operation for starting up CORBA-based applications.Finite Element Application Service. The Alegra application is a structuraldynamics �nite element code written in C++. It was selected as the �rst candi-date application for the framework. It was made CORBA-aware so that it couldbe accessed in a distributed fashion from the desktop using the Web Top aspectsof the framework. Therefore, an IDL interface was de�ned for Alegra operations,and the object implementation of this interface, or Alegra wrapper, serves as afront end to the Alegra software. The IDL interface provides operations for start-ing an execution, retrieving status of the execution, and aborting or terminatingan execution.Visualization Service. A spyglass service was developed which enables usersto view early results of a computation. It consists of a CORBA-based serverwhich awaits signals from an analysis code indicating that simulation time stepdata is available. This data is accessed, the geometry of requested objects isextracted and rendered into an o�-line frame bu�er (using the Mesa graphicslibrary, which is OpenGL-like), and a JPEG image is created from the framebu�er. This image is sent both to the PDO and to the Web Top.If the Web Top is active, it can perform remote navigation and request thatan image be regenerated from another perspective (i.e., camera position). AJava3D-based object is present on the Web Top that contains a bounding box ofthe objects in the image. Six degree-of-freedom navigation is possible within thatJava3D object, and the bounding box can be repositioned accordingly. Whenthe desired point-of-view of the bounding box is reached, the viewpoint trans-formation matrix is extracted and sent to the spyglass service which uses it toreposition the camera and render another JPEG image from that perspective.3.3 Product Database Operator (PDO)In the Sandia environment, the maintenance and accessibility of details regardingthe development of a complex product is vitally important. A primary reasonfor this is accountability, but there is also the fact that certain products have avery long projected lifetime and must occasionally be upgraded or have variouscomponents replaced. Each modi�cation must undergo simulation testing withthe original parts of the product. Another aspect of this problem is the aging



workforce and the loss of expertise that comes with attrition. Often, it is just notpossible to return to the original designer or analyst of the product or componentfor further information.All of this leads to the necessity of keeping a repository with large amountsof disparate information that should be easily accessible. Currently at Sandiathere are multiple established databases that store some of this information. Thedatabases are queried by the person needing the data, and then the query resultsare manually combined with other data sources to accumulate all the informationnecessary to complete the task at hand. This is a massive bookkeeping e�ort.The Product Database Operator (PDO) is a software system which com-bines the capabilities of a commercial Object Oriented Database ManagementSystem (ODBMS) with a Common Object Request Broker (CORBA) serverto support an integrated, functional information repository. The PDO providespersistent storage to establish, maintain, and make available programmatically(to a CORBA client) product information, along with system, con�guration, orother details required. All of this information that is needed to execute simula-tions, alter the design of any components, and incorporate new analysis methodsis made available without burdening the user with the task of remembering suchdetails. The need for such automation is accentuated by the potential for main-taining numerous binaries and libraries for particular software due to the use ofheterogeneous systems, and by the utilization of remote, unfamiliar platforms asthey are made available through network expansion.The PDO repository provides a valuable archive of product developmentinformation and meta-data relating to evolution of a product and its compo-nents. Complex persistent information objects capture the design state, recipe,requirements, results, software tools, and access information for a legacy or in-development product. Product information in the PDO includes not only thespeci�cs necessary to locate any information relating to the product, but alsoincludes methods to actually do the access or processing of a particular aspectof the problem, such as starting a program or transferring a �le to a neededlocation. Methods can locate and deliver necessary inputs to the applicationand receive and retain outputs from that application. Designers, analysts anddevelopers, each from their di�ering viewpoints, make use of the PDO to recordand deliver the detailed and changing information necessary to integrate data,procedures, and locations for executing complex software applications and forproviding documentation of decisions made and lessons learned.Product information can be linked together to form composite products andto do regression testing on software modi�cations and upgrades. Products maybe analyzed with alternative software to not only validate the composition andconstruction of the product, but also to validate and calibrate the analysis soft-ware. Event noti�cation is supported to enable active database functionality andto synchronize steps of a process. The PDO can store documentation and help�les and maintain the status of an in-progress analysis. The use of shared objectsin the database enables certain information to exist in only one instance, im-plying that a single database update will modify many information items. This



minimizes the impact of system upgrades and repartitioning, new development,new hardware, and other changes inevitable in a dynamic, developing system.4 ConclusionsThe framework is currently in an initial prototype phase. A focused problem do-main for the �rst implementation involves providing desktop access to the Alegra�nite element code executing on a Linux-based CPLANT Miata HP cluster. Inaddition, the framework provides a visualization capability which feeds backsnapshots of data generated by Alegra at each time step. Figure 3. illustratesthe capabilities provided by the �rst framework prototype.
Fig. 3. First Instantiation of the SI/PDO ArchitectureOn the Web Top are the components to con�gure, execute, monitor, and dis-play results of an Alegra run. Coupled to the beans through the bean event modelare the adapters which handle the IIOP/CORBA protocol used to communicatewith application wrappers and the PDO. The PDO repository coordinates allof the activities associated with a particular product development cycle. On theCPLANT side, a launch service automatically launches application wrappers,and wrappers exist for the Alegra and Visualization services. The Alegra serviceis a front-end to the native Alegra code and has the capability to call CPLANT



services to load the code into the computational nodes, start execution, and mon-itor status. The Visualization service encapsulates the visualization algorithmsfor o�ine rendering and generation of JPEG images. Because the capability doesnot yet exist to allow direct communication of data in parallel from applicationsto visualization codes, Alegra generates �les on shared �le systems, and thena CORBA-based Alegra status task is used to notify the Visualization servicewhen data is available for rendering. When the image is completed, CORBA isagain used to ship it back to the desktop where it is displayed.There is obviouslymuch work remaining in the development of the frameworkand the overall SI/PDO architecture. The framework needs to be extended andproductionized for actual mission-based use. To do this more easily, reuseabledesign patterns are being documented which can be applied to extrapolatingthe framework for other applications, services, or problem domains. In addition,further research and development will involve incorporating fault tolerant fea-tures, investigating impacts of distance computing on some of the framework'sarchitectural components such as the adapters and network protocols, lookingat performance, scalability, security, and other distributed resource management(DRM) issues, and continuing the work on the PDO concept.References1. Baldeschwieler, J. E., R. D. Blumofe, and E. A. Brewer, ATLAS: An Infrastruc-ture for Global Computing, Proceedings of the Seventh ACM SIGOPS EuropeanWorkshop on System Support for Worldwide Applications, 1996.2. Baratloo, A., M. Karaul, Z. Kedem, and P. Wycko�, Charlotte: Metacomputing onthe Web, Proceedings of the 9th Conference on Parallel and Distributed ComputingSystems, 1996.3. Brecht, T., H. Sandhu, M. Shan, and J. Talbot, ParaWeb: Towards World-WideSupercomputing, Proceedings of the Seventh ACM SIGOPS European Workshopon System Support for Worldwide Applications, 1996.4. Camiel, N., S. London, N. Nisan, and O. Regev, The POPCORN Project: Dis-tributed Computation over the Internet in Java, 6th International World Wide WebConference, April 1997.5. Christiansen, B. O., P. Cappello, M. Ionescu, M. O. Neary, K. E. Schauser, and D.Wu, Javelin: Internet-Based Parallel Computing Using Java, Department of Com-puter Science, University of California, Santa Barbara, 1998.6. Foster, I., and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit,International Journal of Supercomputer Applications, 1997.7. Grimshaw, A. S., W. A. Wulf, and the Legion team, The Legion Vision of a World-wide Virtual Computer, Communications of the ACM, 40 (1), January 1997.8. Litzkow, M., M. Livny, and M. W. Mutka, Condor - A Hunter of Idle Workstations,Proceedings of the 8th International Conference of Distributed Computing Systems,June 1988.9. Vahdat, A., P. Eastham, C. Yoshikawa, E. Belani, T. Anderson, D. Culler, and M.Dahlin, WebOS: Operating System Services For Wide Area Applications, TechnicalReport CSD-97-938, UC Berkeley, 1997.



Molecular Dynamics with C++. An objectoriented approach.Matthias M�uller1 Institute for Computer Applications IPfa�enwaldring 27,D-70569 Stuttgart, Germanymatthias@ica1.uni-stuttgart.de2 High Performance Computing Center (HLRS)Allmandring 30D-70550 Stuttgart, GermanyAbstract. The complexity of parallel computing hardware calls for soft-ware that eases the development of numerical models for researchers thatdo not have a deep knowledge of the platforms' communication strate-gies and that do not have the time to write e�cient code themselves. Weshow how \container" data structures can address the needs of manypotential users of parallel machines that have so far been deterred bythe complexity of parallelizing code. These example presented here is amolecular dynamics simulation.Our approach uses several ideas from the Standard Template Library(STL). Particles are stored in a Template Container that also distributesthem among the processors in the parallel version. For the integrationapplicators are applied to the particles. The force calculation is done bya method "for each pair" similar to "for each" that takes an extendedapplicator as an argument. This extended applicator takes two particlesas its arguments and is applied to every potential interaction pair.1 Principles of Molecular DynamicsThe principle of a Molecular Dynamics (MD) program is: �nd the interactionpartners for every particle, calculate the forces between the particles and inte-grate the equations of motion. A real MD program can be rather complex, i.e.by using optimization techniques like linked cell algorithms for short range in-teraction. Di�erent MD programs need di�erent types of particles with di�erentdegrees of freedom and forces. Parallel computers with distributed memory addanother level of complexity: particles have to be distributed among the proces-sors and interactions across processor boundaries have to be calculated.With this in mind we developed a MD package for short range interaction. Itallows the easy modi�cation of particle type, interaction force, and integrationscheme and allows to switch between the serial and parallel implementationwithout changing the main program. We decided to use C++ and the MessagePassing Interface (MPI) for implementation because both are available on most



supercomputers as well as on the workstations where the code is developed. Inaddition C++ was designed to have no or only a minimal runtime overheadwhile still o�ering the advantages of an object oriented language.The parallel paradigm applied here is domain decomposition (see Fig. 1),therefore every CPU is responsible for a part of the domain and has to exchangeinformations about the border of its domain with its adjacent neighbors. Insteadof exchanging them directly with all 8 or 26 neighbors in two or three dimensionsrespectively the Plimpton scheme[1] is applied here (see Fig. 2).
Fig. 1. Domain decomposition. The cells of the linked cell algorithm containing datathat has to be shared with the neighbors (shadow cells) are in gray.

Fig. 2. Plimpton scheme to exchange shadow cells.



2 Design of the particle containerTo free the ordinary programmer from the details of bookkeeping and still pro-vide him with the freedom to implement his own particle types, forces and inte-gration scheme we decided to provide a template container for particles similarto the containers that are provided by the standard template library (STL). Inaddition to the normal members provided by a STL container a particle con-tainer provides a template member for_each_pair to allow for iterations overpairs of particles. Here the function object concept of STL is applied, the forceclass has to supply an operator() for two particles:template<class PARTICLE>class Force{public:inline void operator()(PARTICLE & p1 , PARTICLE & p2){Vector force;// calculation of f goes herep1.force += force;p2.force -= force; // actio = reactio}};This example also demonstrates the possibility to formulate the algorithm in anatural, dimension independent way. To avoid possible performance problemsdue to the many small vectors used, we employ the template expression tech-nique [2] to perform loop unrolling, inlining and other optimizations at compiletime.The main loop of a MD simulation will look similar to this example.PartContLC<Particle,3> box(ll,ur,bound_cond,cut_off);double dt=0.1; // time stepMD_int_vv_start<Particle> int_start(dt); // integrationMD_int_vv_finish<Particle> int_finish(dt);while( t<maxT ){// velocity verlet integration first part:for_each_particle(box.begin(),box.end(),int_start);// force calculation:box.update(); // communicationbox.for_each_pair(myForce);// velocity verlet integration second part:for_each_particle(box.begin(),box.end(),int_finish);// advance time:t+=dt;}In the STL algorithms and containers are separated as much as possible.However, in order to have an e�cient search algorithm for interaction pairs we



had to incorporate it into the container, much like the sort algorithm for listsin the STL. The member function for each pair performs a pair search withthe well known linked cell algorithm. For debugging purposes there exists afor each pair(iterator,iterator,func object) that performs a brute forceN2 loop across all pairs.The integration in the code example above needs two function objects forthe velocity verlet integration:template<class T>class MD_int_vv_start{public:MD_int_vv_start(double adt=1.){dt=adt;};inline void operator()(T& p){p.x += p.v*dt+ p.f*(0.5*dt*dt); // update positionp.v += p.f*(0.5*dt); // update velocityp.f=0.; // clear force}private:double dt; // time step};template<class T>class MD_int_vv_finish {public:MD_int_vv_finish(double adt=1.){dt=adt;};inline void operator()(P& p){p.v += p.f*(.5*dt); // update velocity}private:double dt; // time step};2.1 Latency hidingTo achieve latency hiding it was decided to group the communication in twosections. First the communication for the �rst dimension is initiated by callsto MPI Isend. In a second stage this communication is completed and the callsfor all remaining dimensions are performed, allowing a partial overlap of com-munication with computation. In the basic version of the template containerall communication is done in update. Now this call is split into update initand update wait representing the two stages of communication. In this appli-cation the force calculation for particles that interact only with particles of thecore domain is performed between the �rst and the second stage. The optimizedcontainer provides the calls for each inner pair and for each bound pair tocalculate the pairwise interaction for the corresponding domains.



3 Performance3.1 Comparison between C and C++While recent benchmarks have shown that C++ can compete with C or For-tran [3] it is not clear whether this holds for a particular application. Becauseperformance depends on the abstraction techniques used [4, 5] it is a non trivialtask to �nd a suitable balance between certain techniques and performance. Be-cause the force calculation is the most time consuming part in an MD simulation,the danger of an abstraction penalty at this point is high.
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Fig. 3. Total runtime of two di�erent Molecular Dynamics programs depending on thenumber of PEs.To get an estimate of the performance penalty of using C++ and its ab-straction we made a comparison with a program (imd) written in C that wasdeveloped independently [6]. The basic linked cell algorithm is the same. For asimulation of a Lennard-Jones fcc crystal with 442368 atoms the C++ versionis between 3 percent slower and 20 percent faster. There are several reasonswhy the speed up of the C++ program is worse. First, latency hiding is appliedand its advantage is lost rapidly with decreasing numbers of particles. Second,Newton's third law is not applied across PE boundaries. This increases the work-load on a single PE and results in larger overall runtimes when the cost of theadditional communication for exchanging forces is negligible. For large particlenumbers the overlapping of communication and computation will also overcomeperformance problems due to possible congestion of the T3Es network [7].3.2 Performance between di�erent compilersWhile C++ was designed to have only minimum runtime overhead, the actualabstraction penalty does not only depend on the abstraction level used, but also



on the optimization technique of the compiler. Fig. 4 gives an impression of thedi�erences we observed between di�erent compilers. There is a factor of morethan three between the best and worst optimizing compiler.But using the best compiler is not enough.We observed a similar performancepenalty when upgrading from KCC 3.2 to KCC 3.3. The reason was that withKCC 3.3 exception handling was turned on by default. Using a compiler switch todisable exception handling we were back to the old performance. This can not beintrinsic to exception handling because cxx does show good performance whilestill providing exception handling. Obviously some important optimizations area�ected.Compiler 
agsSUN CC 4.2 -fastDEC cxx 6.x -O5 -tune host -ieee -assume noaccuracy sensitiveIBM xlC 3.1.4 -O3Cray CC 3.0.1.3 -O3KAI KCC 3.2 +K3 -O3GNU gcc 2.7.2 -O3Table 1. Optimization 
ags used for the di�erent compilers.
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4 ConclusionWehave shown that object-oriented concepts help to design 
exible, portable andeasy-to-use tools for molecular dynamics. In particular, judicious application ofthe template and inlining mechanisms of C++ can lead to program performanceat par or only slightly worse than that of classical procedural languages. Inseveral cases, the container abstractions described above have proved to yieldprograms easily portable to parallel platforms and between 2 and 3 dimensions.As an technical aside we see that the use of optimizingC++ compilers is oftenseverely hampered by the available memory and �le transfer rates. In addition,on the software side, compiler vendors only recently support the important newfeatures of C++ speci�ed in the ANSI/ISO standard.I acknowledge �nancial support of the SFB 382 and the institute of computerapplication 1 (ICA1) where this software has been developed. I also would liketo thank several colleagues at the ICA1 who take an active part in developingand improving the described software, among others Kai H�o
er, Oliver Kitt,Christian Manwart, Reinmar M�uck, Gerd Sauermann, Stefan Schwarzer.References1. Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour-nal of Computational Physics, 117:1{19, 1995.2. Todd Veldhuizen. Expression templates. C++ Report, pages 26{31, June 1995.3. Todd Veldhuizen. Scienti�c computing: C++ vs. Fortran. Dr. Dobb's Journal,November 1997.4. Scott Haney. Is C++ fast enough for scienti�c computing? Computers in Physics,8(6):690{694, Nov/Dec 1994.5. Arch D. Robison. C++ gets faster for scienti�c computing. Computers in Physics,10:458{462, 1996.6. J. Stadler, R. Mikulla, and H.-R. Trebin. IMD: A software package for moleculardynamics studies on parallel computers. Int. J. Mod. Phys. C, 8:1131{1140, 1997.7. Matthias M�uller and Michael Resch. Pe mapping and the congestion problem onthe T3E. In Hermann Lederer and Friedrich Hertweck, editors, Proceedings of theFourth European Cray-SGI MPP Workshop, pages 20{28. IPP, Garching, Germany,September 1998. see http://www.rzg.mpg.de/mpp-workshop/proceedings.html.





Simulating and Modeling in JavaAugustin Prodan1, Florin Gorunescu2, and Radu Prodan31 Iuliu Hat�ieganu University, Cluj-Napoca, aprodan@umfcluj.ro2 University of Medicine and Pharmacy, Craiova, gorun@medinf.comp-craiova.ro3 University of Basel, prodan@ifi.unibas.chAbstract. The purpose of this paper is to present preliminary resultsof an experimental work concerning the possibilities o�ered by Java lan-guage for simulating and modeling applications. It describes an object-oriented approach to the simulation of the random variables by meansof clasical distributions. The theoretical fundamentals for the things im-plemented are also given. An application which shows a model for the
ow of patients around departments of geriatric medicine is presented.Future research e�ort will be oriented towards model analysis by useof simulation study, exploratory data analysis, statistical data mining,queuing models and visualizations.1 IntroductionPrevious research has shown that stochastic models are advantageous tools forrepresentation of the real world [6]. Based on theoretical fundamentals in stochas-tic modeling [5], we intend to make an incremental development of an object-oriented Java framework containing the main elements for building and imple-menting stochastic models. This is an experimental method developed in theDepartment of Mathematics and Informatics, Iuliu Hat�ieganu University Cluj-Napoca, in collaboration with the University of Medicine and Pharmacy Craiova.The models are �tted to data from actual medical and pharmaceutical settings.We incorporated methods for simulating and modeling the 
ow of patients inthe departments of geriatric medicine. The population of geriatrics in a givenhospital district is relatively stable and therefore we may model the movement ofgeriatric patients by considering both their entrance into the hospital and theirstay in the geriatric unit. The need for a realistic model to represent the lengthof stay of geriatric patients in a unit, is recognized by physicians, health careand hospital administrators. However, early models did not consider the di�er-ence between acute and chronic care patients and thus the mean time a patientspent in the department was used as a performance indicator. The di�erencebetween acute and long-stay care patients led to the development of compart-mental deterministic discrete-time model, considering acute and long-stay careas compartments in the geriatric department [3]. While the deterministic ap-proach enables the calculation of means of geriatric patients requiring hospitalcare, the stochastic model also enables one to extract variances by taking intoaccount patient variability hence allowing the variations inherent in individual



behaviour to be quanti�ed. Once the model has been shown accurately to rep-resent the movement of geriatric patients, given expert knowledge of feasiblechanges to the system and their associated costs, the theoretical e�ects of mod-i�cations to the system may be calculated and assessed without actually havingto implement the changes. Furthermore, the implementation of the respectivechanges could also prove to be quite costly. It is therefore possible to maximizethe e�ciency of the geriatric unit, thus allowing for the optimization of the useof hospital resources which can, in turn, improve health care in the hospital.2 The Fundamentals of Simulation in Java2.1 The Simulation of Random Numbers in JavaThe basis of a simulation study are the random numbers. Most computer lan-guages have a built-in random number generator. The numbers generated thisway are not random as they are deterministically computed via some mathe-matical formulae. This is the reason they are sometimes called pseudo-randomnumbers. However, such numbers can be used to simulate random numbers, be-cause they have the appearance of being random values uniformly distributed oninterval (0,1). Moreover, these numbers can be used to generate random num-bers on any interval. For this reason, in this paper we refer to them as randomnumbers.Java provides the following facilities to generate random numbers [4]:The Class java.util.Random { An instance of this class can be used togenerate a stream of random numbers based on a linear congruential formula[2].The Method java.lang.Math.random() { This method is a simpler way ofusing the one above, by making use of the default constructor. When thismethod is �rst called, it creates a single new random number generator,which is then used for all calls to this method and nowhere else. It returns arandom number uniformly distributed on interval [0.0, 1.0), in format doubleprecision.2.2 The Simulation of Classical DistributionsThe classical random variables are the most simple stochastic models, so calleddistributional models, which enter into the composition of other complex mod-els. It stands to reason that it is necessary the development of some techniquesto simulate the values of random variables with various distributions. This islikely because they frequently appear in applications.A hierarchy of classes which models the clasical distributions is proposed. Thehierarchy is shown in Fig. 1 using an Inverted Tree Diagram. Each distributionis determined by a set parameters and a distribution function [5]. Based on theseelements, a polymor�c method called simValue() is speci�ed and specialised byeach distribution class in turn, in order to simulate a speci�c value. An instance



of a particular class can be used to simulate a set of values for the correspondingrandom variable, by calling the simValue() method as many times as needed.
Fig. 1. The Hierarchy of Classes for Clasical DistributionsThe particular implementation for each class is based on one or more of the fol-lowing techniques: the Inverse Transform Technique, the Acceptance-RejectionTechnique and the Composition Technique [5].The Inverse Transform Technique { This technique is based on the follow-ing theorem [5]:Theorem 1. If U is a uniform (0, 1) random variable, then for any dis-tribution function F, the random variable X de�ned by X = F�1(U ) hasdistribution F.This theorem shows that one can simulate a random variable X with dis-tribution function F by generating a random number U and then settingX = F�1(U ). The Inverse Transform Technique is used to simulate a dis-crete random variable (binomial BIN (n; p)), as shown in subsection 3.1,and a continuous random variable (exponential EXP (�)), as presented inthe subsection 4.1.The Acceptance-Rejection Technique { An e�cient method for simulatinga random variable with density function g(x) is important in that it can beused as a basis for simulating another random variable with density functionf(x). If c is a constant for which we have f(x)g(x) � c, 8x such that g(x) 6= 0,the acceptance-rejection algorithm for simulating the random variable withthe density function f(x) can be expressed as follows [5]:1. Simulate a value for random variable Y having density function g(x);2. Simulate a random number U ;3. If U � f(Y )cg(Y ) , set X = Y , otherwise go to step 1.The following theorem asserts that the previous algorithm works well [5]:



Theorem 2. The random variableX simulated by acceptance-rejection tech-nique has the density function f(x). The number of iterations that are neededto simulate a value is a geometric random variable with mean c.The subsection 4.2 shows how acceptance-rejection technique is used to sim-ulate the normal random variable.The Composition Technique { If Fi, i = 1; 2; :::; n are distribution functionsand �i, i = 1; 2; :::; n are nonnegative numbers so that Pki=1 �i = 1 thenthe distribution function F given by F (x) = Pni=1 �iFi(x) is said to bea composition, or mixture, of the distribution functions Fi, i = 1; 2; :::; n.A method to simulate from F is to simulate a random variable I, so thatpi = PfI = ig = �i, i = 1; 2; :::; n and then to simulate fromFI . That means,if the simulated value of I is I = k, then the second simulation is from Fk.The composition technique is presented in subsection 5.3.3 The Simulation of Discrete Random VariablesThis section describes the implementation of the Inverse Transform Technique tosimulate a random variable using the binomial distribution. This is representedby the class DistribBinomial. In a similar manner, classes for the Poisson,geometric and discrete uniform distributions can be designed and implemented.3.1 Binomial Random VariableA binomial random variable X with parameters n and p has the probabilitymass function: pi = PfX = ig = Cinpi(1 � p)n�i, i = 0; 1; 2; :::; n: The key ofusing the inverse transform technique to simulate such a random variable is thefollowing recursive identity:PfX = i+ 1g = n�ii+1 p1�pPfX = igWith i denoting the value currently under consideration, pp = PfX = ig andF = F (i) = PfX � ig, the algorithm can be expressed as follows:1. Simulate a random number U ;2. Initializations: rap = p1�p , i = 0, pp = (1 � p)n, F = pp;3. If U < F , set X = i and stop;4. Recursion: pp = rapn�ii+1 pp, F = F + pp, i = i+ 1, then go to step 3.The Java algorithm which implements the method simValue() inside the classDistribBinomial, is shown in Fig. 2.The algorithm can be improved upon when the mean np is large. Since a binomialrandom variable with mean np is most likely to take on one of the values closestto np, a more e�cient algorithmwould �rst check one of these values, then searchdownward in the case where X � np, or upward otherwise.



public class DistribBinomial extends DistributionDiscrete {int n; // number of trials.double p; // probability of success.. . .public double simValue() { // Simulate a valuedouble U, rap, pp, F, i=0;U = Math.random();rap = p/(1-p);pp = Math.exp(n*Math.log(1-p)); // P{X=0}F = pp; // F(0) = P{X=0}while (U > F) {pp = (rap*(n-i)/(i+1))*pp; // recursionF = F + pp; // F(i)=P{X<=i} distribution functioni++;}return i;// Return the simulated value} // simValue()} // Fig. 2. The Class DistribBinomial3.2 Simulated versus Theoretical ValuesThe way to verify the accuracy of a particular simValue()method is to comparethe simulated results with theoretical ones. A Java applet provides this facilityin the case of discrete distributions. An instance of a discrete distribution classis used to generate a sequence of N independent values for the correspondingrandom variable. The doSimulation() method, shown in Fig. 3, serves thispurpose. In Java all method bindings happen polymorphically via late binding,void doSimulation(DistributionDiscrete dis) {for (int k=0; k<N; k++) {d[(int)dis.simValue()]++;}}Fig. 3. The Simulation and Counting of N Values for a Discrete Distributionso the method simValue() can talk to the base class DistributionDiscrete,and all derived-class cases will work correctly using the same code. The generatedvalues for a random variableX are stored in the array d[X]. With a visualizationmethod, the elements of this array are expressed graphically in a column format,as shown in the left graphs of the Fig. 4, 5, 6 and 7. The right graphs of thesame �gures are columns representing the corresponding theoretical values forthe same distributions, proportionally with probabilities pi, i > 0. By selectingvarious discrete distributions while the applet is running, one can compare thesimulated results with the theoretical values.



Fig. 4. Binomial Distribution BIN(11, 0.3), for N=1000 Values
Fig. 5. Poisson Distribution POI(2.7), for N=1000 Values

Fig. 6. Geometric Distribution GEO(0.6), for N=1000 ValuesFig. 7. Discrete Uniform Distribution DU(5), for N=1000 Values



4 The Simulation of Continuous Random Variables4.1 Exponential Random VariableAn exponential random variable with rate � > 0 (mean 1� ) has the probabilitydensity function f(x) = �e�x, and the distribution function F (x) = 1 � e�x,for 0 < x < 1. If we let u = F (x) = 1 � e�x, it is easy to verify that x =F�1(u) = � 1� ln(1 � u). Noting that if U is uniform on (0, 1), then 1 � U isalso uniform on (0, 1), and the inverse transform algorithm for simulating anexponential random variable with parameter � can be expressed as follows:1. Simulate a random number U ;2. Set X = � 1� ln(U ).This algorithm is implemented by the method simValue() inside the class Dis-tribExponential (Fig. 8).public class DistribExponential extends DistributionContinuous {double lambda; // parameter for exponential distribution(rate). . .public double simValue() { // Simulate a valuedouble U = Math.random();return -1/lambda*Math.log(U);} // simValue()} ///;Fig. 8. The Class DistribExponential for Exponential Random Variable4.2 Normal Random VariableA unit normal random variable Z(with mean 0 and variance 1) has the prob-ability density function f(x) = q 2� e� x22 , 0 < x < 1. To simulate a valuefor Z we apply the acceptance-rejection technique using as g(x) the exponen-tial density function with � = 1, that is g(x) = e�x, 0 < x < 1. It is easyto verify that maximum value of f(x)g(x) occurs when x = 1, so we can takec = max f(x)g(x) = f(1)g(1) = p2e�. Because f(x)cg(x) = ex� x22 � 12 = e� (x�1)22 , theacceptance-rejection algorithm for simulating X = jZj (the absolute value ofa unit normal) can be expressed as follows [5]:1. Simulate Y, an exponential random variable with parameter � = 1;2. Simulate a random number U ;3. If U � e� (Y�1)22 set X = Y , otherwise go to step 1.As the density f(x) is an even function, the previous algorithm simulate theabsolute value of a unit normal distribution. To obtain a unit normal distributionwe set Z be equally likely to be either X or �X.



5 A Model for Geriatric Medicine5.1 GeneralitiesThe population of geriatrics in a given hospital district is relatively stable andtherefore we may model the movement of geriatric patients by considering boththeir entrance into the hospital and their stay in the geriatric unit. Admissionsare modeled as a Poisson process with parameter � (the arrival rate), estimatedby using the observed inter-arrival times. Previous research has shown that the
ow of patients around compartments of geriatric medicine may be modeled bythe application of a mixed-exponential distribution, where the number of termsin the mixture corresponds to the number of stages of patient care. A commonscenario is that there are two stages for in-patient care: acute and long-stay.The di�erence between acute and long-stay patients has led to the developmentof a compartmental deterministic discrete-time model, considering acute andlong-stay care as compartments in the geriatric unit. The use of stochastic com-partmental analysis [6], which assumes probabilistic behaviour of the patientsaround the system, is considered a more realistic representation of an actualsituation rather than the simpler deterministic model. In order to simulate themodel, we have split it into two parts: the Poisson arrivals and the in-patientcare.5.2 Simulating Admission as a Poisson Stream in Continuous TimeThe arrival of patients is modeled by a Poisson process at rate �= 2.75 patientsper month with the corresponding density f(x) = �e��x, x � 0. Incorporatingthe results provides one way in which to simulate the inter-arrival times. This isaccomplished by examining the times between events for such a process. Thesetimes are independent exponential random variables, each with rate �. For thispurpose we use instances of the classDistribExponential, described in subsec-tion 4.1. To simulate the �rst T time units of a Poisson process, it is necessary tosimulate the successive inter-arrival times, stopping when their sum exceeds T .A Java applet called arrivalsPoisson, which incorporates the statements pre-sented in Fig. 9, performs a graphical simulation of monthly arrivals is used the.The number of arrivals occurring in each month are counted in correspondingelements of the array P [ ]. Running this applet with parameter T = 12 (oneyear), one can visualise monthly arrivals for a period of one year, the resultsbearing the semblance of those in Fig. 10.5.3 Simulating the In-Patient Care TimeThe in-patient care { acute and long-stay { is modeled as a mixed-exponentialphase-type distribution, using the composition technique (see subsection 2.2)with the density f(x) = ��1e��1x + (1 � �)�2e��2x, x � 0, where � = 0.93,�1 = 0.04 and �2 = 0.001, which implies a mean care time of ��1 + 1���2 � 93:25days per patient. Fig. 11 shows how the composition of classes paradigm [1] is



double t=0, T=12, lambda=2.75;DistribExponential de = new DistribExponential(lambda);...for (int k=0; t<(double)T; k++) {t = t + de.simValue(); // increment with inter-arrival timeP[(int)t]++; // Increment patients number for corresp. month.} Fig. 9. The Simulation of a Poisson Process with Rate � = 2:75Fig. 10. The Poisson Arrivals at Rate � = 2:75 per Month, for One Yearused to implement the composition algorithm for simulating the in-patient caretime.double t=0, U, alfa1=0.04, alfa2=0.001, ro=0.93;DistribExponential e1 = new DistribExponential(alfa1);DistribExponential e2 = new DistribExponential(alfa2);...for (int k=0; k<n; k++) {U = Math.random();if (U<ro) {t = e1.simValue();}else {t = e2.simValue();}S[k] = (int)t; // care time for patient k (in days)}Fig. 11. The Simulation of Care Time as a Mixed Exponential DistributionThe n variable stores the number of patients. The array S[ ] is used to registerthe care time in days for patients. The care time for each patient is counted inthe corresponding element of the array S[ ]. Running the sequence presented inFig. 11 with parameter n = 15, the results appear as in Fig. 12.Once the model has been shown to accurately represent the movement of geri-atric patients, given expert knowledge of feasible changes to the system and thecosts associated, the theoretical e�ects of modi�cations to the system may becalculated. Furthermore, the costs can be assessed without having to implementthe changes in a real setting, which could be costly. Therefore, it is possible tomaximize the e�ciency of the geriatric department, thus optimizing the use ofhospital resources, in order to improve hospital care.



Fig. 12. The Simulated Results for In-Patient Geriatric Care Time6 ConclusionsThe paper describes some results obtained in research concerning the possibili-ties o�ered by Java language for simulating and modeling applications. A set ofbase line classes for simulation of classical distributions were introduced. Basedon their design and implementation, a model was created which accurately rep-resents the movement of geriatric patients. Both geriatricians and hospital ad-ministrators agreed that such a model can be used to maximize the e�ciency ofthe geriatric department and to optimize the use of hospital resources in orderto improve hospital care. The two simulations presented in section 5 need to beintegrated within two threads inside the same application process. We intend tocontinue the incremental development with new classes for implementing simula-tion and model techniques. A model for estimating tumor sizes by using the Hitor Miss Monte Carlo integration will be created. Future research e�ort will bealso oriented towards the development of new models, model analysis, statisticaldata mining, and visualisations.References1. Bruce Eckel. Thinking in Java. President, MindView Inc., Prentice Hall PTR, 1998.2. Donald E. Knuth. The Art of Computer Programming, vol 2. Addison-WesleyPublishing Company, 1973.3. G. Harrison, P. Millard Balancing acute and long-term care: the maths of throughputin departments of geriatric medicine, Math. Inform. Med., 30, 221-228, 1991.4. Augustin Prodan, Mihai Prodan. Mediul Java pentru Internet. Ed. ProMedia-plus,Cluj-Napoca, 1997.5. Sheldon M. Ross. A Course in Simulation. Macmillan Publishing Company, NewYork, 1990.6. G. Taylor, S. McClean, P. Millard. Continuous-time Markov models for geriatricpatient behaviour. Appl. Stochastic Models Data Anal, 13, 315-323, 1998.


