FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fir Angewandte Mathematik

D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

Proceedings of the Workshop on
Parallel/High-Performance
Object-Oriented Scientific Computing
(POOSC’99)

Federico Bassetti*, Kei Davis*, Bernd Mohr (Eds.)

FZJ-ZAM-IB-9906

Juni 1999
(letzte Anderung: 07.06.99)

(*) Scientific Computing Group, CIC-19 MS B256
Los Alamos National Laboratory
Los Alamos, NM 87545, U.S.A.

Part of European Conference on Object-Oriented Prograq(BE@OOP’99)

Preface

This report contains the Proceedings of the Workshop on Parallel / high-per-
formance Object-Oriented Scientific Computing (POOSC’99) at the European
Conference on Object-Oriented Programming (ECOOP’99) which is held in Lis-
abon, Portugal on June 15, 1999. The workshop is a joint organization by the
Special Interest Group on Object Oriented Technologies of the Esprit Working
Group EuroTools and Los Alamos National Laboratory.

While object-oriented programming is being embraced in industry, partic-
ularly in the form of C+4 and Java, its acceptance by the parallel / high-
performance scientific programming community is tentative at best. In this lat-
ter domain performance is invariably of paramount importance, where even the
transition from FORTRAN 77 to C is incomplete, primarily because of perfor-
mance loss. On the other hand, three factors together practically dictate the
use of language features that provide better paradigms for abstraction: increas-
ingly complex numerical algorithms, application requirements, and hardware
(e.g. deep memory hierarchies, numbers of processors, communication and 1/0).

In spite of considerable skepticism in the community, various small groups are
developing significant parallel scientific applications and software frameworks in
C++ and FORTRAN 90; others are investigating the use of Java. This work-
shop seeks to bring together practitioners and researchers in this emerging field
to ‘compare notes’ on their work — describe existing, developing, or proposed
software; tried and proposed programming languages and techniques; perfor-
mance issues and their realized or proposed resolution; and discuss points of
concern for progress and acceptance of object-oriented scientific computing.

By request of the publisher, only a report of the workshop will appear in the
ECOOP’99 Workshop Reader. Because of this, we decided to publish a collection
of selected papers ourselves. The papers included reflect the multidisciplinary
character and broad spectrum of the field. We thank all contributors for their
contribution and cooporation. The organizers also want to thank Ana Maria
Moreira for the work and help organizing this workshop. Finally we thank all
the attendees and contributors who made this workshop a high quality event!

June 1999 Kei Davis
Federico Bassetti
Bernd Mohr

Organization

The POOSC’99 workshop is part of ECOOP’99, the 13th European Confer-
ence on Object-Oriented Programming which is organized by the Department
of Computer Science of the University of Lisbon, under the auspices of AITO
(Association Internationale pour les Technologies Objets).

=

Workshop Organizers

Kei Davis Scientific Computing Group, CIC-19 MS B256
Federico Bassetti Los Alamos National Laboratory

Los Alamos, NM 87545, U.S.A.
{kei,fede}@lanl.gv

Bernd Mohr Research Center Juelich
John von Neumann Institute for Computing (NIC)
Central Institute for Applied Mathematics (ZAM)
52425 Juelich, Germany
b.mohr@fz-juelich.de

Sponsoring Institutions

This workshop is supported by the Esprit Working Group WG 27141 EuroTools.

Table of Contents

Object Oriented Concepts for Parallel Smoothed
Particle Hydrodynamics Simulations
Stefan Huttemann, Michael Hipp, Marcus Ritt, Wolfgang Rosenstiel

Using Collections to Structure Parallelism and Distribution
Pascale Launay, Jean-Louis Pazat

An Agent-Based Design for Problem Solving Environments
Dan C. Marinescu

An Object-Based Metasystem for Distributed High
Performance Simulation and Product Realization
Victor P. Holmes, John M. Linebarger, David J. Miller, Ruthe L. Vandewart

Molecular Dynamics with C+4. An object oriented approach.
Matthias Muller

Simulating and Modeling in Java
Augustin Prodan, Florin Gorunescu, Radu Prodan

Object Oriented Concepts for Parallel
Smoothed Particle Hydrodynamics
Simulations

Stefan Hiittemann! Michael Hipp! Marcus Ritt! Wolfgang Rosenstiel®

Wilhelm-Schickard-Institut fur Informatik, Universitat Tibingen
Arbeitsbereich fur Technische Informatik

Sand 13, 72076 Tiibingen

e-mail: {hippm,hutteman,ritt,rosen } @informatik.uni-tuebingen.de

Abstract. In this paper we present our object oriented concepts for parallel smoo-
thed particle hydrodynamics simulations based on a 3 year work experience in a
government funded project with computer scientists, physicists and mathemati-
cians.’

In this project we support physicists to parallelize their simulation methods
and to run these programs on supercomputers like the NEC SX-4 and Cray T3E
installations at HLRS Stuttgart (www.hlrs.de).

First we introduce our portable parallel (non object oriented) environment DT'S.
Benchmarks of simulations we parallelized are shown, to demonstrate the efficiency
of our environment.

Based on these experiences we discuss our concepts developed so far, and future
ideas for object oriented parallel SPH simulations at two different layers. An object
oriented message passing library with load-balancing mechanisms for our simula-
tions at the lower level, and an object oriented parallel application library for our
physical simulations on the upper level.

1 Motivation

In a collaborate work of physicists, mathematicians and computer scien-
tists, we simulate astrophysical systems. In this paper we present our object
oriented concepts based on our experiences made in a government-funded
project! in the last three years. Smoothed Particle Hydrodynamics (SPH)
is the method used by the astrophysicists to solve a Navier-Stokes equation
(see [3], [6]). SPH became widely popular in the last years. SPH is now also
used as an alternative for grid based CFD simulations (e.g. in automobile
industry).

The astrophysical problems are open boundary problems of viscous com-
pressible fluids. SPH uses particles that move with the fluid instead of grid

! SFB 382: ”Verfahren und Algorithmen zur Simulation physikalischer Prozesse
auf Hochstleistungsrechnern” (Methods and algorithms to simulate physical pro-
cesses on supercomputers)

points as in other CFD simulation methods. This makes SPH much more
difficult to parallelize than grid based CFD methods.

1.1 Portable Environment

Programming with threads showed to be well-known and simple enough to
serve as a basis for a portable parallel programming environment. The first
approach, named ”Distributed threads system” (DTS) [5] generalized the
notion of threads for distributed memory machines. A compiler was written
to simplify the task of identifying and creating parallel threads.

A major drawback of this system was its pure functional programming
model: the communication between threads running on different nodes was
not well supported. We are investigating, whether a combination of (global)
threads and distributed shared memory, i.e. a logical consistent memory for
machines with physically distributed memory, is suitable for our applications.

Currently we are working at the task of combining the basic ideas of this
system, namely distributed threads and shared memory, with object-oriented
concepts. This system, written in C4++, is described in section 3.

For Cray T3E we used another approach. We provide a high level appli-
cation interface optimized for SPH-like programs. The library has a simple to
use interface and hides near all of the parallelization and explicit communi-
cation. A programmer only has to give some hints to optimize the communi-
cation and load balancing. The library itself is based on the native SHMEM
message passing for Cray T3E or alternatively on MPI.

1.2 The need for Object-Oriented techniques

There were reasons to redesign our simulation environment using object-
oriented techniques:

1. using message objects on the lowest level to communicate between con-
current program units on distributed memory computers seems to be
most natural and easy to use for our simulation methods.

2. the growing complexity of our simulation programs requires structural
elements in the programming paradigm not offered by e.g. FORTRAN
or C. Also using an object-oriented approach to describe the problem is
closer to the physical model used.

3. to exploit the usual features promised by object-oriented programming
(reusability etc.) our project partners tried programming in C++; which
resulted in anything but reusable, modular software. It showed, that
just by switching to C++ physicists do not gain much, and fall back
to FORTRAN-style programming.

Our goal is to provide a well documented library of reusable and extensi-
ble solutions for astrophysical simulation methods. This also should give
a guideline on how to use object-oriented techniques for our simulation

methods (e.g. SPH).

2 Parallelizing SPH

We could gain a lot of experience with two different types of parallelization of
the SPH code for shared memory machines based on DTS and for machines
with distributed memory for which we developed a portable procedural li-
brary.

Both implementations can compete with other SPH codes for parallel
machines such as the codes for Cray T3D, CM-5 or Intel Paragon [4,2].

2.1 Shared Memory Machines

The SPH code was implemented on the NECSX-4 using DTS. The usage
of DTS allows to run the same SPH code both on the NEC SX-4 and on
other machines' without modifications. The parallel SPH code was used for
benchmarking, using different numbers of CPUs. The results prove the high
quality of the parallelization features of the NEC SX-4.

The right side of fig. 1 shows the parallel efficiency of the parallel SPH
code on the NEC SX-4. For 10000 particles the parallel efficiency decreases
from 90% on two CPUs to 60% on 20 CPUs. For 100000 particles the parallel
efficiency is more than 90% for all 20 CPUs.

Further runtime improvement can be reached by vectorization of the code.
In the left side of fig. 1 we present a comparison of the runtimes of SPH simu-
lations of the same test problem with different codes. Together, the measure-
ments in fig. 1 show, that already using as less as 2 CPUs on the NECS5X-4 a
runtime improvement compared to the optimal sequential SPH code can be
achieved. As the efficiency is excellent for 20 processors, very good runtime
improvements can be expected using more CPUs.

| ©10.000 Particles _ m100.000 Particles | 16000

14000

12000

10000

8000

6000

4000
0
sec. F77 c(1cpPu) C (8 CPU)

MNo Vect OVector

Fig. 1. Left: parallel efficiency on NEC SX-4. Right: Vectorization and F77 solution
of a SPH simulation with 10000 particles for optimized F77 sequential code, parallel
SPH on 1 CPU and parallel SPH on 8 CPUs.

! e.g. SGI Onyx2, HP V-Class

2.2 Distributed Memory Architectures

Besides the DTS SPH code for shared memory machines, there are a few
implementations for SPH on parallel machines such as the PTreeSPH [1].
The PTreeSPH code is based on MPI and, therefore, is portable to nearly
every platform. We decided to go another way, because we see the need
for a more efficient implementation on some architectures. We developed an
abstraction layer optimized for SPH like problems with two different low level
implementations for the communication.

The slower portable implementation is based on MPI. The other imple-
mentation is based on the Cray SHMEM message passing library, which pro-
vides functions oriented at the Cray T3E hardware capabilities and therefor
gains a better performance.

Having two different implementations allowed us to test the flexibility of
our SPH abstraction layer. We first wrote the SHMEM implementation and
specified the interface on which we put our physical code. It showed that
the layer was flexible enough to later add a MPI implementation without
changing the interface or the physical application.

Parallelization An essential idea for parallelization was to use two different
domain decompositions depending on the type of computation:

1. All computations without neighbor interaction are done on an equally
sized subset on every node. The subset 1s selected by splitting the particle
field into n parts for n nodes. A node also operates as a relay node for
its subset. Information about a specific particle can always be found on
its relay node.

2. For computations with neighbor interaction all particles are sorted ac-
cording to their positions into a grid with equally sized cells. These cells
are assigned to nodes in a way that every node holds the same number
of particles.

The load balancing is good in both cases, because the computation takes
about the same time for every particle. For the case of very unbalanced com-
putations we have the option to do load stealing between nodes to optimize
the load balancing.

This approach reduces communication overhead and memory consump-
tion because the particle information resides on one node as long as possible.
Also, the computation of this domain decomposition is fast enough to be done
on the fly. This is important, because the particle positions change after every
integration step.

Native SHMEM communication vs. MPI We measured the perfor-
mance of the MPI code on the Cray T3E in Stuttgart and on the IBM SP
system in Karlsruhe. On the SP we used 128 P25C thin nodes with 120MHz.
The tests showed, that the MPI implementation of the Cray T3E is worse

compared to the native SHMEM library (see fig. 2). Our tests show that
Cray could easily improve the MPI performance by making better wrappers
around existing SHMEM calls. For some communication parts, such as gather
operations of large arrays, the throughput decreased from about 300MB/s us-
ing SHMEM to 120 MB/s using MPI. On the SP we achieved the expected
performance of around 50MB/s. The whole code didn’t perform this good on
the SP system, because the implementation is optimized for Cray T3E and
depends heavily on good communication bandwidth and latency in order to
scale beyond 64 Processors.

Results It proved to be beneficial to use an abstraction layer, which allows
the exchange of low level parts without changing the application to obtain the
best performance on a given hardware platform. In the previous projects this
was a procedural abstraction layer. For our current developments we choose
an object oriented programming model for this abstraction. The crucial point
for the parallelization is a smart domain decomposition optimized for both,
the machine and the problem. An object oriented modeling of domain de-
compositions, which we want to describe in a later chapter is therefor one of
the requirements for our parallel environment.

Speedup for 100.000 SPH particles

T3Ewith SHMEM ——— |
T3E with MP| ---x---
SP2 with MPI

180

160

140

120

100 /

80 /

60 mrmn s
20 x/‘/ 8

0

0 50 100 150 200 250
Number of processors

Speedup

Fig. 2. Speedup of the SPH Simulation on Cray T3E with SHMEM and MPI and
on IBM SP with MPI for a mid-size problem with 100 000 SPH particles. For larger
node numbers the curves are dominated by the non parallelized communication
parts such as gather/broadcast operations between all nodes. Please note the effect
of the limitations of the MPI implementation on the Cray T3E beyond 128 nodes.

3 An object-oriented parallel runtime system

Based on the experiences with existing object-oriented parallel systems and
our own object-oriented codes, we now describe our concepts for a object-
oriented parallel runtime system.

There were numerous reasons, which motivated the redesign of these lay-
ers, despite of the existence of object-oriented message passing libraries like
MPI4++ or MPC++ [7]. The most important were the lack of thread-safe

implementations and the missing integration of modern C++4 concepts like
templates and the support for the standard template library.

To support object-orientation for parallel programming, we extended our
model of parallel computing with threads on machines with distributed mem-
ory to C++ objects. In this model, an object — extended for architectures with
distributed memory — 1s the basic entity of data communication. Objects can
be migrated between different address spaces and replicated to improve per-
formance. Migration and replication can be done explicitly by the user. For
specific applications-domains, for example particle codes, we intend to pro-
vide tailored load-balancing components which free the user from explicitly
specifying the data distribution. The methods for guaranteeing consistency
are based on the well-known consistency protocols from distributed shared
memory. In addition to this, objects support asynchronous remote method
invocations. This corresponds to the asynchronous remote procedure call in
our former approach, that is, a thread fork extended for machines with dis-
tributed memory. Based on these facilities we plan to integrate some library
solutions for a couple of common problems, for example automatic paral-
lelization and load-balancing for independent data-parallel problems. These
libraries will be application-independent (in difference to the higher-level li-
braries described later, which support specific physical problem domains like
particle simulations).

To realize this model, we started implementing a basic layer for object-
oriented message-passing. This layer can be used independently from the
higher-level layers. To keep it portable, it is designed to be easily implemented
on different low-level communication primitives. One implementation is on
top of MPI to support a broad range of parallel architectures. There also ex-
ists an UDP-based version for test runs in a local environments without MPI
support. Currently we are porting the library to the Cray T3E to run perfor-
mance tests. Due to the bad MPI performance on the Cray T3E (see fig. 2,
we will also implement a native Cray SHMEM based version for production
runs on this platform.

To simplify the migration from procedural codes written in MPI, the
functions and methods are very similar to the MPI calls as far as suitable
for the object-oriented interface. The main focus lied on extending the MPI
functionality to objects without losing type-safety and the full integrations
of the STL, i.e. transferring STL containers as well as using iterators for send
and receive calls. To support the higher-level layers the library had to be
programmed thread-safe.

The user interface for the object-oriented message-passing is straightfor-
ward with Communicator objects, send- and receive-methods. Composite ob-
jects like STL containers, arrays or user objects are decomposed into basic
types by an overload resolution/traits technique [9]. Therefore, the user has
not to deal with the unattractive concept of MPI data types, without loosing
type-safety. To send and receive objects, the user has to provide serialize and
deserialize methods, specifying how an object can be broken in components.

To minimize the communication overhead and prevent writing unnecessary
serializer methods, objects with a trivial copy constructor can be handled
directly by the library. We are also working an a code preprocessor which
will generate the serializer methods for most objects automatically. Further-
more, note that the techniques used for sending objects and other C++ data
types over the net, can be used without modification to implement persistent
objects and application-level check-pointing.

A message-passing based version of an object-oriented SPH code will be
our first test application. Based on these experiments, we plan to implement
the higher-level layers by the end of this year. A portable object-oriented
thread library will be integrated in the near future.

4 Towards object-oriented parallel SPH
4.1 Design Patterns

We cannot ignore the demand for programming in C or FORTRAN. To pro-
vide simply an implementation in C4++ will not be accepted by our project
partners. We had to find a way to write down our solutions in a ”Meta-
Language”. Using Design Patterns serves this purpose best. We have an easy
to understand way to document our solutions that is not bound to any pro-
gramming language. Writing the design patterns in UML, we can use tools
to implement the documented Design Patterns in e.g. C++ (almost) auto-
matically.

As a first step towards an object-oriented SPH program, we used an easy
to parallelize Monte Carlo simulation of the pulsar HER-X1. Looking at the
problem as a programmer the Monte Carlo simulation and the SPH simula-
tion are similar, because they are both particle simulation methods (in the
case of the Monte Carlo simulation the particles are photons).

In the following we want to give an overview over the design patterns we
used. The names for the patterns are taken from the Design Pattern book
by E. Gamma (see [8]), but our patterns might differ from those in the book
(we still need to give names to our patterns).

Composite Pattern for Domain-Decomposition Domain decomposition is the
method used to parallelize particle simulations like SPH. The simulation area
of all particles is decomposed into separate simulation-domains. The domain
consists of particle lists that are being used to evaluate the equations. Since
the particles interact, information must flow between the domains.

The main problem with the domains is the communication between the
domains, and how to update the particle lists in each domain during the
simulation.

To describe the solution for this problem, we used a pattern similar to the
composite design pattern. The general behavior common to all simulation-
domains, the ability to communicate with other domains, 1s defined in the

abstract root-class SimulationArea (see fig. 3). A concrete simulation area
will inherit the basic communication methods from this parent class, and
change the implementation to its own needs.

Using this pattern, you can write simulation programs with compatible
simulation sub-domains without the need to rewrite the communication be-
tween the different simulation-domains. To parallelize a simulation build us-

Simiaton Area

communicate() 47

add(SimulationArea)

del(SimulationArea)

. Concrete
Simulation Area

communicale@*"" It
I

list of neighbours

add(SimulationArea)

del(SimulationArea) forall g in children
g.comunicate();

Fig. 3. Design Pattern used for Domain-Decomposition

ing the Domain-Decomposition, we make the SimulationArea root-class in-
herit from a class similar to a Thread-class, so that all simulation-area objects
become active objects. (Active in the sense, that these objects run concur-
rently).

Iterator Pattern to step through neitghbor-lists The iterator pattern is used
to step through dynamic lists of neighbor simulation areas. This pattern is
also available in C+4 STL.

Strateqy Pattern to select a numerical algorithm The core functionality of a
simulation of physical processes always are some numerical algorithms. The
selection of algorithms is stored in libraries for procedural languages like C
or FORTRAN. To keep the advantage of a fine-grained selection of different
algorithms we choose a strategy pattern for our numerical algorithms.

A strategy always works on a specific context. As an example we use
the coordinate transformation of a vector (see fig. 4). Here the vector is the
context of the strategy, and the different transformations are the concrete
strategies, that have to be implemented for a simulation. The basic function-
ality is defined in the root-class for the coordinate transformation strategy. In
this example the root-class contains the methods toGeneric and toSpecial.
These methods transform the coordinates of a vector between a special co-
ordinate system and a (pre-defined) generic coordinate system.

Vector Coordinate Transf.
toGeneric()
strategy
' toSpecial()
Cylinder Spherical Other ...
toGeneric() toGeneric() toGeneric()
toSpecial() toSpecial() toSpecial()

Fig. 4. Strategy Design Pattern for Coordinate Transformations

Facade Pattern to handle input parameters To handle user input parameters
independent of the objects used in the simulation, we use the facade pattern.
A facade object collects all input, and marshals the parameters to the correct
object for this simulation.

Factory Pattern to create the particles A Factory pattern can be used to
create the particles for the simulation. Communicating a single particle will
not be efficient, therefore container classes for particles are necessary. Par-
ticles created using the ParticleFactory can now be collected, and put into
container classes (see fig. 5).

. Particle
ParticleFactory
Operation()
GetParticle(key) 4’
Electron Photon
Operation() Operation()

Fig. 5. Factory pattern for particles

Documentation Documenting the Design Patterns in a modern, easy to read
way was achieved by using multi-frame HTML documents. Solutions that

are fun to read find generally better acceptance, even if there is no direct
implementation in the favorite language of the programmer, e.g. FORTRAN.
Also documenting the simplicity of our ready to use solutions motivates more
physicists to take a look at a new programming paradigm (some even take a
second look).

Prototyping in JAVA We also tried using JAVA for prototyping. Implement-
ing our design patterns written in UML is fast to do in JAVA. The JAVA
prototypes cannot be used for the real problem (in our case because there
are no JAVA environments on Cray and NEC computers). The prototype is
really just a prototype.

References

1. Davé, R., Dubinski, J., Hernquist, L.: Parallel TreeSPH. New Astronomy volume
2 number 3 (1997) 277-297

2. Dubinski, J.: A Parallel Tree Code. Board of Studies in Astronomy and Astro-
physics, University of California, Santa Cruz (1994)

3. Lucy, Leon B.: A Numerical Approach to Testing the Fission Hypothesis. As-
tron. J volume 82 (1977) 1013-1924

4. Warren, S. Michael, Salmon, K. John: A portable parallel particle program.
Comp. Phys. Comm. volume 87 (1995) 266-290

5. Bubeck, T., Hipp, M., Huttemann, S., Kunze, S., Ritt, M., Rosenstiel, W., Ruder,
H., Speith, R.: Parallel SPH on Cray T3E and NECSX-4 using D'T'S High Per-
formance Computing in Science and Engineering ’98, Springer (1999) 396-410

6. Gingold, R. A., Monaghan, J. J.: Smoothed particle hydrodynamics: theory and
application to non-spherical stars Mon. Not. R. astr. Soc. volume 181 (1977)
375-389

7. Wilson, Gregory V.,Lu, Paul: Parallel Programming using C++ The MIT Press,
Cambridge (1996)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements of
reusable object-oriented software Addison-Wesley (1995)

9. Programming languages — C++. International Standard 14882. 1SO/IEC (1998)

Using Collections to Structure Parallelism and
Distribution

Pascale Launay and Jean-Louis Pazat

IRISA, Campus de Beaulieu, F35042 RENNES Cedex
Pascale.Launay@irisa.fr, Jean-Louis.Pazat@irisa.fr
http://www.irisa.fr/CAPS/PROJECTS/Do

Abstract. The aim of the Do! project is to ease the task of program-
ming scientific parallel and distributed applications using Java. We use
collections to provide an unified way to structure parallelism and dis-
tribution. We have defined a parallel framework, based on collections,
to write parallel applications in a centralized fashion (as if all objects
were on one single host) and we provide “distributed” collections for dis-
tributed execution of these applications (objects are mapped on distinct
hosts). We have developed both static collections (arrays) and dynamic
collections (lists) for this purpose. This framework has been targeted to
the Java language and runs on any standard Java environment.

1 Introduction

Two main approaches are used to introduce parallelism and distribution in
object-oriented scientific applications: task parallelism [1,7] and data paral-
lelism [4, 6]. Our project integrates both approaches:

Data parallelism has been integrated in an object oriented language through the
use of collections: collections are large object aggregates, responsible for the stor-
age and the accesses to their elements. The data parallel model 1s well suited to
express global operations on large data aggregates. This model has been widely
used in many scientific applications, but it does not allow a convenient descrip-
tion of task parallelism which also exists in those applications. The collection
libraries are usually restricted to static collections (arrays). We have used both
static and dynamic collections.

Task parallelism has been introduced through the use of active objects. Using
collections to store active objects allows us to structure parallelism and to pro-
vide global distribution specifications.

In section 2, we show how structured parallel constructs are introduced through
the use of collections. We present the use of distributed collections to run parallel
applications in distributed environnements in section 3. Finally, we conclude in
section 4 with the performance concerns, the current status of our project, and
the extensions we are planning to develop.

2 Collections and parallelism

We introduce parallelism through active objects: an active object has its own se-
quential activity and private attributes. A parameter can be passed to our active
objects that can be used for communications and synchronizations with other
objects. Active objects are implemented in our framework using Java THREADS.

We introduce structured parallel constructs through collections. We express global
operations on collections through operators and we have defined a parallel frame-
work, represented by a PAR class (or a descendant), implementing a parallel
model (parallel construct).

2.1 Global operations on collections

Iterators and operators We use the operator design pattern [5] (figure 1)
to express global operations on collections. Accesses and global operations over
collection elements are separate entities: iterators and operators. From a collec-
tion, an iterator provides a sequence of elements to the operator, that processes
elements. An operator accesses elements independently from the collection and
can use iterators to traverse collections in various ways. There are several kinds
of operators, depending on:

— how many sequences they need as entry. Default operators process elements
from one sequence; CROSS operators process elements from two sequences,
applying operations to elements from one sequence with the corresponding
elements from the second one;

— if they give a result or not. The result may be a single element (REDUCE
operator, for example) or a sequence of elements (FILTER operator, for ex-
ample). Operators giving a sequence of elements can be viewed as iterators,
and composed with other operators.

coll it

COLLECTION [I TERATOR OPERATOR
has start run
empty hext doAll o
items @ item cobeooo - S
! exhausted for (it.start(); !it.exhausted;
ey it.next()

The operator design pattern has been designed in order to model computa-

Fig. 1. The operator design pattern

run(it.item());

tions over large data structures. It provides us with a modular way to express

parallelism and distribution. We use collections to store active objects (Java
THREADS) and we define operations over active objects (activation, synchro-
nization) through the operator design pattern.

Robust iterators and reactive operators In a concurrent environment, it is
important to ensure that iterators support insertions and removals in collections
during a traversal; such iterators are called robust iterators [2]: “a robust iterator
ensures that insertions and removals won’t interfere with traversal, and it does it
without copying the collection”. By using iterators in the operator design pattern,
robustness can be managed both by the iterator and by the operator: in some
cases, the iterator can react properly towards an insertion or a removal in the
collection, but in other cases the operator has more information to manage the
modification correctly.

Moreover, if the operation duration is not limited to the collection traversal,
it may be important to react to a modification in the collection even after the end
of the traversal. For example, an operator whose purpose is to display a graphical
representation of a collection should be able to react properly to a modification
in the collection during the whole collection visualization, and modify properly
the representation being displayed. We call such operators reactive operators.

TAsSK
call stop
start join

run

itL.next())
itL.item().eventPerformed();

EVENTLISTENEHR

eventPerformed

EVENT SOURCE

addEventListener

source listeners

removeEventListener]
listeners

A4

0 processEvent
I

Fig. 2. The event pattern

We have implemented a general solution to manage robustness in a con-
current environment as well as reactivity for operators, relying on an asyn-
chronous event pattern, based upon the observer design pattern [2] (figure 2).
The event pattern’s main components are the source (EVENTSOURCE) that gen-
erates events, and the listener (EVENTLISTENER) that reacts to events.

Collections and iterators are sources, iterators and operators are listeners
(figure 3): when a modification occurs in a collection, an event is generated

and thrown to iterators operating on that collection. An iterator catching such
an event can either manage it properly or throw it to the operator using that
iterator: if the element has already been traversed, the iterator throws the event
to the operator that takes it into account. As an example, if we define an operator
to compute the sum of integers stored in a collection, and if modifications in the
collection are allowed during the computation, it is important that the operator
takes modifications in the collection into account: if an integer that has already
been computed is removed from the collection, the operator has to subtract the
integer’s value before returning.

EVENT SOURCE VENTLISTENE

A

coll it
COLLECTION ITERATOR OPERATOR
removeElemento,
addElementq | eventPerformecb;
— r0CESSEVENL(); | i (raversed) |
”””””””” . processEvent(); |

Fig. 3. Robust iterators and reactive operators

2.2 Collections to structure parallelism

Active objects Active objects are objects having their own sequential activ-
ity: when using active objects, several control flows run concurrently through
different objects, leading to inter-object concurrency; when active objects access
other objects of the program, they can communicate (through shared objects),
leading to intra-object concurrency when concurrent control flows run into a sin-
gle shared object. We have implemented active objects using Java THREADS.
Active objects are represented by the Task class (figure 2); they are activated
synchronously or asynchronously through method invocation (call or start).
It is possible to stop their activity, or wait for their termination (stop or join).
Active objects communicate through shared objects, passed as parameters at
object activation. The shared object’s type is the generic type OBJECT, so the
synchronization mechanisms use to manage shared accesses are those provided
by the Java language ([3], chapter 17)

Parallel constructs Parallelism is encapsulated in task collections, that store
active objects. A first traversal of a task collection asynchronously activates each

OPERATOR

TASK
PAR
join
o start runo _____ & _____|
= task.start(); ___, start.doAll(); 3

' join.doAll();

Fig. 4. PAR construct

element leading to intra-collection parallelism. A second traversal is processed
to make a synchronization for tasks termination. We have defined a parallel
construct, the PAR class, that relies on two specific operators, the START class
(to activate tasks) and the JOIN class (to synchronize with task terminations).
From a task collection (storing active objects), the parallel construct implements
the parallel activation of tasks and the synchronization with task terminations,
using the START and JoIN operators (figure 4). Nested parallelism is introduced
by the fact that a PAR object is an active object, that can be stored in a task
collection and activated in parallel with otheractive objects.

Using different types of collections and iterators, we implement different mod-
els of parallelism as parallel constructs represented by PAR subclasses. Figure b
shows different models of parallelism: the PAR class defines independent paral-
lel task, while the SHAREDPAR subclass implements parallel tasks accessing a
single shared object. The DATAPAR subclass implements copies of a single task
accessing elements of a data collection (coarse grain data parallelism).

PAR SHAREDPAR DATAPAR
o~)
@)
o 2Q9
SN0y Eiroy 248

Fig. 5. Different models of parallelism

3 Collections and distribution

We introduce distribution through the mapping of objects on distinct hosts
(3vMs). We process remote creations to map objects on hosts using runtime
classes, and remote method invocations to implement communications between
remote objects using the Java RMI. Because using Java RMI requires important
modifications in the code of classes, we provide seamless location of objects
through code transformations of classes (accessible classes).

We structure distribution through distributed collections (collections which ele-
ments are located on distinct hosts). The distribution of collections is described
in a specific class called a distribution layout manager (DLM): DLMs encapsulate
all computations depending on the type of distribution (owner retrieving and
key transformation).

3.1 Seamless location of objects through classes transformations

We transform components in order to allow transparent locations of objects:
transparent mapping of objects on remote hosts, and transparent communica-
tions with objects from remote hosts. The only classes we transform are those
that can be accessed from remote hosts: they are marked by the programmer as
accessible (they implement the ACCESSIBLE interface). From an accessible class,
we generate three main classes:

— the proxy class, that catches the clients requests and sends them to the
implementation class or to the static class;

— the implementation class contains all instance attributes and method imple-
mentations;

— the static class contains all static attributes and method implementations.

To instanciate an accessible class, the programmer gives an additional param-
eter to the constructor, identifying the accessible object location. A prozy object
is created localy, and an tmplementation object is created remotely, depending on
the accessible object location (through the remoteNew method). Their is only one
instance of the static class shared by all prozy objects (the staticNew method
implements this single instance creation). The proxy, implementation and static
objects communicate using Java RMI.

Figure 6 shows the transformation of an accessible class. All classes and
interfaces in grey are classes from the Java RMI packages.

3.2 Distributed collections to structure distribution

Distributed collections are collections which elements are located on distinct
hosts. Distributed collections manage access to accessible distributed elements.
The distribution of collections is described in a specific class called a distribu-
tion layout manager (DLM): DLMs encapsulate all computations depending on

—
C // ’_L ﬁ

_ " C_Int
accessible \ C_Impl
class |
‘\ Y impl°"
\ oy class [N—
Preprocessor s 4tN>
\ remoteiNew
\ - C_Stint
\ »|C_Static
\ . staticNew .
N static
N
N class

— & instanciation ~—-

Fig. 6. Accessible class transformation

the type of distribution (owner retrieving and key transformation). For each
type of collection, there are several DLMs, to describe different kinds of distribu-
tions (for example, for arrays, we define “HPF-like” distributions through the
BLOCKARRAYDLM or CYCLICARRAYDLM).

In a distributed program, a specific DLM is associated to each distributed
collection. It is used by the collection to process accesses, and it is used to
determine where to create an object that will be stored in a distributed collection.
DLMs are associated to non distributed collections as well. In that case, they have
no effect; they are included in a program to specify how to distribute it. The
operators process operations on elements of distributed collections. Accesses to
distributed elements are managed by the distributed collection and the seamless
location of accessible objects, so there is no need to modify iterators, operators
and parallel constructs.

We have implemented dynamic DLMs for dynamic collections (lists): dynamic
DLMs are able to take into account dynamic informations to compute the map-
ping of objects at runtime. Thus, we can implement load balancing strategies
through the use of dynamic DLMs: when a new active object is inserted in an
“active” list in order to be activated, the DLM chooses the host where to map
this object according to the processor loads. More sophisticated load balanc-
ing strategies can be implemented and tested by redefining one method of the
DynamicLisTDLM, without any other change in the program code.

3.3 From parallel to distributed

The programmer writes his application as a non distributed parallel program,
without bothering with the object locations. To transform a non distributed
parallel program into a distributed program, the programmer:

— describes the objects’ mapping by associating appropriate DLMs to collec-
tions,

— marks objects that can be accessed from remote hosts as accessible (the
distributed collections’ elements, for example).

Then, a preprocessor:

— transforms accessible classes to allow seamless location of accessible objects;

— adds a parameter for the distributed collection elements’ creation, according
to the collection DLM, to identify the object location,;

— replaces non distributed collections by distributed collections

4 Performance concerns, current status and future work

Performances are one of the main concerns in scientific computing. Our environ-
ment is targeted to the Java language, using THREADS and RMI. The current
implementation of the Sun JvM is not satisfying in terms of performances, but
some environments now available will make it possible to use Java for high per-
formance computing [8,9]. The over-cost of using our framework and our code
transformations for accessible classes is negligible.

A first release of the Do! environment is currently available online (http:
//www.irisa.fr/CAPS/PROJECTS/Do), comprising arrays and static DLMs. A
second release integrating lists and dynamic DLMs has already been implemented,
and will be available soon. We have implemented some applications using our en-
vironment and we intend to use high performance Java environments in a future
release. A foreseen extension is to include object migration, in order to allow load
balancing during active objects execution. This technique will also be ported to
a CORBA environment, Java being used only as a coordination language.

References

1. D. Caromel, W. Klauser, and J. Vayssiére. Towards seamless computing and meta-
computing in Java. Concurrency Practice and Ezperience, 10(11-13):1043-1061,
September—November 1998.

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Flements of
Reusable Object-Oriented Software. Addison Wesley, 1994.

3. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The Java[tm]
Series. Computer and Engineering Publishing Group, 1996.

4. J.-M. Jézéquel, F. Guidec, and F. Hamelin. Parallelizing object oriented software
through the reuse of parallel components. In Object-Oriented Systems, volume 1,
pages 149-170, 1994.

5. J.-M. Jézéquel and J.-L. Pacherie. Parallel operators. In Pierre Cointe, editor, 10th
FEuropean Conference on Object-Oriented Programming (ECOOP’96), volume 1098
of Lecture Notes in Computer Science, pages 275-294, Linz, Austria, July 1996.
Springer Verlag.

6. E. Johnson, D. Gannon, and P. Beckman. HPC++: Experiments with the parallel
standard template library. In 11th International Conference on Supercomputing,
pages 124-131. ACM Press, July 1997.

7.

8.

K.-P. Lohr. Concurrency annotations for reusable software. Communications of the
ACM, 36(9):81-89, September 1993.

J. Maassen, R. van Nieuwpoort, R. Veldema, H.E. Bal, and A. Plaat. An efficient im-
plementation of Java’s Remote Method Invocation. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP’99), pages 173-182,
May 1999.

. S. Matsuoka and S. Itoh. Is Java suitable for portable high-performance computing?

In Workshop on Parallel Object-Oriented Scientific Computing (PO0OSC’98), July
1998.

An Agent-Based Design for Problem Solving
Environments

Dan C. Marinescu
(dem@cs.purdue.edu)
Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, USA

Abstract

In this paper we examine alternative means to exploit the advantages
of code mobility, object-oriented design, and agent technology for high
performance distributed computing. We describe an infrastructure for
Problem Solving Environments based upon software agents.

1 Introduction

A number of new initiatives and ideas for high performance distributed comput-
ing have emerged in the last few years. Object-oriented design and programming
languages like Java open up intriguing new perspectives for the development of
complex software systems capable to simulate physical systems of interest to
computational sciences and engineering. The Java Grande initiative aims to
add new constructs and to support optimization techniques needed to make the
Java language more expressive and efficient for numerical simulation. If success-
ful, this effort will lead to more robust scientific codes and increased programmer
productivity.

An important side effect of the use of Java in scientific computing is code
mobility. This brings us to another significant development, computing grids.
Informally, a computing grid is a collection of autonomous computing platforms
with different architectures, interconnected by a high-speed communication net-
work. Computing grids are ideal for applications that have one or more of the
following characteristics: (a) are naturally distributed, data collection points
and programs for processing the data are scattered over a wide area network,
(b) need a variety of services distributed over the network, (c) have occasional
or sustained needs for large amounts of computing resources e.g. CPU cycles,
large memory, vast amounts of disk space, (d) benefit from heterogeneous com-
puting environments consisting of platforms with different architectures, (e)
require a collaborative effort from users scattered over a large geographic area.

Many problems in computational sciences and engineering could benefit from
the use of computing grids. Yet, scientific code mobility, a necessary condition
for effective use of heterogeneous computing environments is a dream waiting
to materialize. Porting a parallel program from one system to another, with a
different architecture and then making it run efficiently are tedious tasks. Thus
the interest of the high performance distributed computing comunity for Java.

We are cautiously optimistic regarding both aspects outlined above. At the
time of this writing, Java code is still inefficient, it runs 10 to 20 times slower
than C code. It is rather unlikely that the Java language will ever include a
comprehensive support for numerical computations because scientific and engi-
neering applications represent only a relatively small fraction of the intended
audience for Java. Even if Java becomes the language of choice for writing sci-
entific and engineering codes, we still have a large body of legacy codes written
along the years and an ”ab inito” approach, re-writing them in Java is unlikely.
We need also to keep in mind that often, parallel codes require new algorithms
to execute efficiently, thus code mobility in a heterogeneous system has inher-
ent limitations. Resource management in a network of autonomous nodes and
security pose formidable challenges that need to be addressed before computing
grids could become a reality.

In this paper we examine alternative means to exploit the advantages of code
mobility, object-oriented design, and agent technology for high performance
distributed computing, at a time when Java Grande and computing grids are
only a promise. To bridge the gap between promise and reality we propose to
develop an infrastructure for Problem Solving Environments, PSEs,; based upon
software agents.

To use a biological metaphor [2], software agents form a nervous system and
perform command and control functions in a Problem Solving Environment.
The agents themselves relay on a distributed object system to communicate
with another. Though the agents are mobile, some of the components of the
PSE are tightly bound to a particular hardware platform and cannot be moved
with ease.

In this paper we first review basic requirements for designing complex sys-
tems like Problem Solving Environments and the role of software agents, then we
introduce a software architecture that has the potential to facilitate the design
and implementation of PSE and to make the resulting systems less brittle.

The basic design philosophy of the Bond system is described in [1], [?] [2],
the security aspects of Bond are presented in [8], an application of Bond to the
design of software agents for a network of PDE solvers is discussed in [11] and
an in depth view of the design of Problem Solving Environments using Bond is
given in [10]. The Bond system was released in mid March 1999.

2 Agents, Problem Solving Environments, and
Software Composition

Software agents seem to be at the center of attention in the computer science
community. Yet different groups have radically different views of what software
agents are, [6], what applications could benefit from the agent technology, and
many have a difficult time sorting out the reality from fiction in this rapidly
moving field and accepting the representation that software agents provide a
”magic bullet” for all problems. The concept of an agent was introduced by the
AT community a decade ago, [3]. An AT agent exhibits an autonomous behavior
and has inferential abilities. A considerable body of work is devoted to agents
able to meet the Turing test by emulating human behavior [9]. Such agents are
useful for a variety of applications in science and engineering e.g. deep space
explorations, robots, and so on.

Our view of an agent is slightly different [1]. For us a software agent is
an abstraction for building complex systems. An agent is an active mobile
object that may or may not have inferential abilities. Our main concern 1s to
develop a constructive framework for building collaborative agents out of ready-
made components and to use this infrastructure for building complex systems
including Problem Solving Environments, PSEs. The primary function of a
Problem Solving Environment is to assist computational scientists and engineers
to carry out complex computations involving multiple programs and data sets.
We use the term workflow and metaprogram interchangeably, to denote both
the static and the dynamic aspects of this set of computations. We argue that
there are several classes of high performance computing applications that can
greatly benefit from the use of agent-based PSEs:

e Naturally distributed applications,
e Data intensive applications.
e Applications with data-dependent or non-deterministic workflows.

e Parallel applications based upon domain data decomposition and legacy
codes.

Many problems in computational science and engineering are naturally dis-
tributed, involve large groups of scientists and engineers, large collections of ex-
perimental data and theoretical models, as well as multiple programs developed
independently and possibly running on systems with different architectures. Ma-
jor tasks including coordination of various activities, enforcing a discipline in
the collaborative effort, discovering services provided by various members of the
team, transporting data from the producer site to the consumer site, and others
can and should be delegated to a Problem Solving Environment. The primary
functions of agents in such an environment are: scheduling and control, resource
discovery, management of local resources, use-level resource management, and
workflow management.

Data-intensive applications are common to many experimental sciences and
engineering design applications. As sensor-based applications become pervasive,
new classes of data-intensive applications are likely to emerge. An important
function of the PSE is to support data annotation. Once metadata describing
the actual data is available, agents can automatically control the workflow, allow
backtracking and restart computations with new parameters of the models.

Applications like climate and oceanographic modeling often relay on many
data collection points and the actual workflow depends both upon the availabil-
ity of the data and the confidence we have in the data. The main function of
the agents in such cases is the dynamic generation of the workflows based upon
available information.

Last, but not least, in some cases one can achieve parallelism using sequen-
tial legacy codes. Whenever we can apply a divide and conquer methodology
based upon the partitions of the data into sub-domains, solve the problem inde-
pendently in each sub-domain, and then resolve with ease the eventual conflicts
between the individual workers we have an appealing alternative to code par-
allelization. The agents should be capable to coordinate the execution and
mediate conflicts.

The idea of building a program out of ready-made components has been
around since the dawn of the computing age, backworldsmen have practiced it
very successfully. Most scientific programs we are familiar with, use mathemat-
ical libraries, parallel programs use communication libraries, graphics programs
rely on graphics libraries, and so on.

Modern programming languages like Java, take the composition process one
step further. A software component, be it a package, or a function, carries with
itself a number of properties that can be queried and/or set to specific values to
customize the component according to the needs of an application which wishes
to embed the component. The mechanism supporting these functions is called
wntrospection. Properties can even be queried at execution time. Reflection
mechanisms allow us to determine run time conditions, for example the source
of an event generated during the computation. The reader may recognize the
reference to the Java Beans but other component architectures exists, Active X
based on Microsoft’s COM and LiveConnect from Netscape to name a few.

Can these ideas be extended to other types of computational objects besides
software components, for example to data, services, and hardware components?
What can be achieved by creating metaobjects describing network objects like
programs, data or hardware? We use here the term “object” rather loosely, but
later on it will become clear that the architecture we envision is intimately tied
to object-oriented concepts. We talk about network objects to acknowledge that
we are concerned with an environment where programs and data are distributed
on autonomous nodes interconnected by high speed networks.

Often the components are legacy codes that cannot be modified with ease. In
this case we can wrap around legacy programs newly created components called
software agents. Each wrapper is tailored to the specific legacy application.
Then interoperability between components is ensured by federation of agents.

3 An Infrastructure for Problem Solving Envi-
ronments

Bond, [1], is a distributed-object, message-oriented system, it uses KQML [5],
as a meta-language for inter-object communication. KQML offers a variety of
message types (performatives) that express an attitude regarding the content
of the exchange. Performatives can also assist agents in finding other agents
that can process their requests. A performative is expressed as an ASCII string,
using a Common Lisp Polish-prefix notation. The first word in the string is the
name of the performative, followed by parameters. Parameters in performatives
are indexed by keywords and therefore order-independent.

The infrastructure provided by Bond supports basic object manipulation,
inter-object communication, local directory and local configuration services, a
distributed awareness mechanisms, probes for security and monitoring functions,
and graphics user interfaces and utilities.

Shadows are proxies for remote objects. Realization of a shadow provides for
instantiation of remote objects. Collections of shadows form vertual networks of
objects.

Residents are active Bond objects running at a Bond address. A resident is
a container for a collection of objects including communicator, directory, con-
figuration, and awareness objects. Subprotocols are closed subsets of KQML
messages. Objects inherit subprotocols. The discovery subprotocol allows an
object to determine the set of subprotocols understood by another object. Other
subprotocols, monitoring, security, agent control, and the property access sub-
protocol understood by all objects.

The transport mechanism between Bond residents is provided by a commu-
nicator object with four interchangeable communication engines based upon:
(a) UDP, (b) TCP, (c) Infospheres, (info.net), and (d) TP Multicast protocols.

Probes are objects attached dynamically to Bond objects to augment their
ability to understand new subprotocols and support new functionality. A secu-
rity probe screens incoming and outgoing messages to an object. The security
framework supports two authentication models, one based upon username, plain
password and one based upon the Challenge Handshake Authentication Protocol,
CHAP. Two access control models are supported, one based upon the IP ad-
dress (firewall) and one based upon an access control list. Monitoring probes
implement a subscription-based monitoring model. An autoprobe allows loading
of probes on demand.

The distributed awareness mechanism provides information about other resi-
dents and individual objects in the network. This information is piggy-backed on
regular messages exchanged among objects to reduce the overhead of supporting
this mechanism. An object may be aware of objects it has never communicated
with. The distributed awareness mechanism and the discovery subprotocol re-
flect our design decision to reduce the need for global services like directory
service and interface repositories.

Several distributed object systems provide support for agents. Infospheres

(//www.infospheres.caltech.edu/) and Bond are academic research projects,
while IBM Aglets (www.trl.ibm.co.jp/aglets/index.html) and Objectspace
Voyager (//www.objectspace.com) are commercial systems.

A first distinctive feature of the Bond architecture, described in more detail
in [1] is that agents are native components of the system. This guarantees that
agents and objects can communicate with one another and the same commu-
nication fabric is used by the entire population of objects. Another distinctive
trait of our approach is that we provide middleware, a software layer to facilitate
the development of a hopefully wide range of applications of network computing.
We are thus forced to pay close attentions to the software engineering aspects
of agent development, in particular to software reuse. We decided to provide
a framework for assembly of agents out of components, some of them reusable.
This is possible due to the agent model we overview now.

We view an agent as a finite-state machine, with a strategy associated with
every state, a model of the world, and an agenda as shown in Figure 1. Upon
entering a state the strategy or strategies associated with that state are activated
and various actions are triggered. The model is the "memory” of the agent,
it reflects the knowledge the agent has access to, as well as the state of the
agent. Transitions from one state to another are triggered by internal conditions
determined by the completion code of the strategy, e.g. success or failure, or by
messages from other agents or objects.

Agent Plane p.

Strategy p.1

Strategy p.2
Agent Plane 1. ==
I Strategy 1.1 _

N N
---+ Strategy 1.2 f
‘A

Strategy 1.i

Strategy 1.n

-base

% A Neural
’< 2
AT v

Model

Figure 1: The abstract model of a Bond Agent

The finite-state machine description of an agent can be provided at mul-

tiple granularity levels, a course-grain description contains a few states with
complex strategies, a fine-grain description consists of a large number of states
with simple strategies. The strategies are the reusable elements in our software
architecture and granularity of the finite state machine of an agent should be
determined to maximize the number of ready made strategies used for the agent.
We have identified a number of common actions and we started building a strat-
egy repository. Examples of actions packed into strategies are: starting up one
or more agents, writing into the model of another agent, starting up a legacy
application, data staging and so on. Ideally, we would like to assemble an agent
without the need to program, using ready-made strategies from repositories.

Another feature of our software agent model is the ability to assemble an
agent dynamically from a ”blueprint”, a text file describing the states, the
transitions, and the model of the agent. Every Bond-enabled site has an ”agent
factory” capable to create an agent from its blueprint. The blueprint can be
embedded into a message, or the URL of the blueprint can be provided to the
agent factory. Once an agent was created, the agent control subprotocol can be
used to control it from a remote site.

In addition to favoring reusability, the software agent model we propose has
other useful features. First, it allows a smooth integration of increasingly com-
plex behavior into agents. For example, consider a scheduling agent with a
mapping state and a mapping strategy. Given a task and a set of target hosts
capable to execute the task, the agent will map the task to one of the hosts sub-
ject to some optimization criteria. We may start with a simple strategy, select
randomly one of the target hosts. Once we are convinced that the scheduling
agent works well, we may replace the mapping strategy with one based upon an
inference engine with access to a database of past performance. The scheduling
agent will perform a more intelligent mapping with the new strategy. Second,
the model supports agent mobility. A blueprint can be modified dynamically
and an additional state can be inserted before a transition takes place. For
example a ”suspend” new state can be added and the ”suspend” strategy be
concatenated with the strategy associated with any state. Upon entering the
”suspend” state the agent can be migrated elsewhere. All we need to do is send
the blueprint and the model to the new site and make sure that the new site
has access to the strategies associated with the states the agent may traverse
in the future. The dynamic alteration of the finite state machine of an agent
can be used to create a ”snapshot” of a group of collaborating agents and help
debug a complex system.

We have integrated into Bond the JESS expert shell developed at Sandia
National Laboratory as a distinct strategy able to support reasoning. Bond
messages allow for embedded programs written in JPython and KIF.

Agent security is a critical issue for the system because the ability to as-
semble and control agents remotely as well as agent mobility, provide unlimited
opportunities for system penetration. Once again the fact that agents are na-
tive Bond objects leads to an elegant solution to the security aspect of agent
design. Any Bond object, agents included, can be augmented dynamically with
a security probe providing a defense perimeter and screening all incoming and

outgoing messages.
The components of a Bond agent shown in Figure 1 are:

e The model of the world is a container object which contains the infor-
mation the agent has about its environment. This information is stored
in the form of dynamic properties of the model object. There is no re-
striction of the format of this information: it can be a knowledge base or
an ontology composed of logical facts and predicates, a pre-trained neu-
ral network, a collection of meta-objects or different forms of handles of
external objects (file handles, sockets, etc).

e The agenda of the agent, which defines the goal of the agent. The agenda
is in itself an object, which implements a boolean and a distance function
on the model. The boolean function shows if the agent accomplished its
goal or not. The distance function may be used by the strategies to choose
their actions.

e The finite state machine of the agent. Each state has an assigned
strategy which defines the behavior of the agent in that state. An agent
can change its state by performing transitions. Transitions are triggered
by internal or external events. External events are messages sent by other
agents or objects. The set of external messages which trigger transitions
in the finite state machine of the agent defines the control subprotocol of
the agent.

e Each state on an agent has a strategy defining the behavior of the agent
in that state. Each strategy performs actions in an infinite cycle until the
agenda 1s accomplished or the state is changed. Actions are considered
atomic from the agent’s point of view, external or internal events interrupt
the agent only between actions. Each action is defined exclusively by the
agenda of the agent and the current model. A strategy can terminate by
triggering a transition by generating an internal event. After the transition
the agent moves in a new state where a different strategy defines the
behavior.

All components of the Bond system are objects, thus Bond agents can be
assembled dynamically and even modified at runtime. The behavior of an agent
is uniquely determined by its model (the model also contains the state which
defines the current strategy). The model can be saved, transferred over the
network.

A bondAgent can be created statically, or dynamically by a factory object
bondAgentFactory using a blueprint. The factory object generates the com-
ponents of the agent either by creating them, either by loading them from
persistent storage. The agent creation process is summarized in Figure 2

Blueprint
repository

&\ =
- 3
= D
\/

Agent Factory

Strategy database

Beneficiary object

A

®

®

Agent

Figure 2: Creating an agent remotely using an agent factory. (1) The beneficiary
object sends a create-agent message to the agent factory (2) The blueprint is
fetched by the agent factory from a repository or extracted from the message (3)
The strategies are loaded from the strategy database (4) The agent is created
(5) The id of the agent is communicated back to the beneficiary, and (6) The
beneficiary object controls the new agent

4 Conclusions

Bond is a Java written, agent-based, distributed-object system we have devel-
oped for the past few years. Bond provides a framework for interoperability
based upon (1) metaobjects that provide information about network objects,
and (2) software agents capable to use the information about network objects
and carry out complex tasks.

Some of the components we propose e.g. the agent framework, the scheduling
agents, the monitoring and security frameworks, are generic and we expect that
they will be included in other applications like distance learning, or possibly
electronic commerce.

The design of a Problem Solving Environment based upon a network of PDE
solvers 1s one of the applications of Bond that illustrates the advantages of a
component based architecture versus a monolithic design of a PSE.

A beta version of the Bond system was released in mid March 1999 un-
der an open source license, LPGL, and can be downloaded from our web site,
http://bond.cs.purdue.edu.

Acknowledgments

the

The work reported in this paper was partially supported by a grant from
National Science Foundation, MCB-9527131, by the Scalable I/O Initiative,

and by a grant from the Intel Corporation.

References

(1]

[2]

Boloni, L., and D.C. Marinescu, An Object-Oriented Framework for Build-
ing Collaborative Network Agents. Kluever Publishers, 1999 (to appear).

Boloni, L., R. Hao, K.K. Jun, and D.C. Marinescu, Structural Biolgy
Metaphors Applied to the Design of a Distributed Object System, Proc. Sec-
ond Workshop on Bio-Inspired Solutions to Parallel Processing Problems,

in LNCS, vol 1586, Springer Verlag, 1999, pp. 275-283.

Bradshaw, J. M., An Introduction to Software Agents, in J. M. Bradshaw
Ed. Software Agents, MIT Press, pp. 3-46, 1997.

The Grid, Blueprint for a New Computing Infrastructure, Foster, 1. and C.
Kesselman, Eds., Morgan Kaufmann, (1998).

Finn, T., Y. Labrou, and J. Mayfield, KQML as an Agent Communication
Language, in J. M. Bradshaw Ed. Software Agents, MIT Press, pp. 291-316,
1997.

Franklin, S. and A. Graesser, Is it an Agent, or just a Program?, Proceed-
ings of the Third International Workshop on Agent Theories, Architectures
and Languages, Springer Verlag, 1996.

Genesereth, M. R., An Agent-Based Framework for Interoperability, in J.
M. Bradshaw Ed. Software Agents, MIT Press, pp. 317-345, 1997.

Hao, R., L. Boloni, K.K. Jun, and D.C. Marinescu, An Aspect-Oriented
Approach to Distributed Object Security, Proc. 4-th IEEE Symp. on Com-
puters and Communications, IEEE Press, (1999), (in print).

Jennings, N. R., K. Sycara, M. Woolridge, A Roadmap of Agent Research
and Development, in Autonomous Agents and Multi-Agent Systems, 1, pp.
275-306, 1998.

Marinescu, D.C., and Boloni L., A Component-Based Architecture for Prob-
lem Solving Environments, 1999, (in preparation).

Tsompanopoulou, P., L. Boloni, D.C. Marinescu, and J.R.Rice, The Design
of Software Agents for a Network of PDE Solvers Proceedings of Workshop
on Autonomous Agents, IEEE Press, 1999 (in press).

An Object-Based Metasystem for
Distributed High Performance Simulation
and Product Realization

Victor P. Holmes, John M. Linebarger,
David J. Miller, and Ruthe L. Vandewart

Sandia National Laboratories
P. O. Box 5800
Albuquerque, New Mexico, USA, 87185
vpholme@sandia.gov
http://www.pdo.sandia.gov/SI.html

Abstract. The Simulation Intranet/Product Database Operator (SI/PDO)
is a cadre system which comprises one element of a multi-disciplinary dis-
tributed and distance computing initiative known as DisCom? at San-
dia National Laboratories. The SI/PDO is an architecture for satisfying
Sandia’s long term goal of providing integrated software services for high
fidelity full physics simulations in a high performance, distributed, and
distance computing environment. This paper presents the initial require-
ments, design, and implementation of the SI/PDO which is based on a
grid-like network computing architecture. The major logical elements of
the architecture include the desktop, distributed business objects, and
data persistence. ...

1 Introduction

The purpose of the Simulation Intranet/Product Database Operator (SI/PDO)
architecture is to satisfy Sandia National Laboratories’ long term goal of provid-
ing designers and analysts an integrated set of product realization and virtual
prototyping services which include high fidelity simulations in a high perfor-
mance (HP), distributed, and distance computing environment. The initial fo-
cus of the architecture is on the development of a distributed object framework
which allows users Web-based desktop access to applications that require high
performance distributed resources for modeling, simulation, analysis, and visu-
alization. This framework satisfies the following characteristics:

— works within a heterogeneous, distributed computing environment,

— 18 object-oriented and based on open standards,

— exhibits network transparency, containing components which are decoupled,
— makes new and existing applications appear as distributed object services,
— provides for sequencing, launching, and monitoring of sets of applications,
— coordinates archival and retrieval of information,

— provides a consistent, integrated operator interface.

1.1 Architectural Thrusts

There are three main thrusts addressed by the first implementation of this frame-
work. First and foremost, the framework architecture provides end users trans-
parent desktop access to Sandia’s Computational Plant (CPLANT), a massively
parallel computing resource constructed of commodity parts. This involves in-
tegration of distributed object computing and Web-based computing with HP
computing, areas which have in the past taken separate research paths and
now are merging to create a component-based architecture for modeling, simu-
lation, and analysis. Technologies being employed include object request brokers
(ORBs), object-oriented databases (ODBMS), and Java Beans, coupled with ap-
plications using the Message-Passing Interface (MPI) and parallel visualization
techniques.

The second aspect of the framework architecture involves integrating visual-
ization with analysis to monitor progress and potentially inject computational
steering. HP computing normally involves long running batch-oriented computa-
tions followed by complex postprocessing to finally visualize the results. In some
cases, the analysis has to be resubmitted with modified component meshes and
parameters. In the SI/PDO model, the framework can provide image snapshots
of simulation time steps to the desktop such that users can determine if the
analysis is on track without having to wait until it is completed. Eventually, the
framework will expand upon this spyglass concept and allow the user to inter-
rupt an analysis to tweak the mesh or parameters, and ultimately use the power
of the CPLANT clusters to perform real-time parallel visualization of data as it
is generated.

The third thrust involves knowledge management through a concept known
as the Product Database Operator or PDO. This concept includes the ability
to capture large quantities of data generated by these analyses in an object
repository, classify this data into a taxonomy which is consistent with the Lab-
oratories’ business model, and then make relevant information available to the
users to solve new problems and achieve new insights, particularly in the area
of nuclear component stockpile stewardship.

1.2 Related Work in Distributed Frameworks

Although this area of research is fairly new, numerous framework architectures
are being developed which contribute to the advancement of the technology. In
addition, with the growing popularity of the Java programming language, many
researchers are pursuing Java-based efforts to establish software infrastructures
for distributed and distance computing. These include ATLAS [1], Charlotte
[2], ParaWeb [3], Popcorn [4], and Javelin [5]. All of these Java-based projects
attempt to provide capabilities for parallel applications in heterogeneous environ-
ments. The use of Java for building distributed systems will continue to flourish
as Internet-based programming becomes more viable. However, the more estab-
lished approaches incorporate Java-based interfaces but do not rely entirely on
this language platform. These include GLOBUS [6], Legion [7], CONDOR [8],
and WebOS [9].

2 Component Model Description

The three thrusts discussed above are realized within a grid-based network com-
puting architecture model consisting of desktop clients, distributed business ob-
jects, and data persistence. The following sections discuss the general charac-
teristics of each of these elements. A subset of these characteristics has been
implemented within the prototype SI/PDO metasystem.

2.1 Web Top

A web browser is viewed as the user’s primary desktop operating environment.
The browser provides access to applications and services required to accomplish
laboratory missions. The browser component of a grid-based architecture 1s con-
cerned with aspects of presentation without knowledge of business rules. It pro-
vides a user-centered, document-centered, coarse-grained, stateless world view.
In the context of the SI/PDO, the browser displays the web pages which provide
access to modeling, simulation, and analysis capabilities. Java Bean components
are used to represent these applications and services. An applet serves as the
container or bean box for graphically programming a simulation sequence, con-
figuring each simulation component in the sequence (customizers, introspection),
invoking the sequence (event model), and monitoring its progress. This approach
provides a component-based architecture which transforms legacy applications
into application components, or business objects.

2.2 Distributed Access to Applications and Services

Transparent connections and communication must be provided between the Web
Top and the distributed services. This messaging element of the grid architec-
ture provides the notion of distributed blobs of computing resources which are
available to the SI/PDO. These resources may be local to a site or remotely
accessed, and the messaging interface makes them appear as if they are on the
user’s local machine. The initial implementation uses the Java Bean event model
coupled with event model adapters which can potentially accommodate various
protocols. These adapters provide the transparent mechanisms for browser-based
beans to connect and communicate with the distributed applications and ser-
vices. Currently the adapters are implemented using CORBA and T1OP.

2.3 Modeling, Simulation, and Analysis Business Objects

The business objects in the architecture are the legacy codes and new codes pro-
vided by Sandia scientists and commercial vendors which implement the services
required by the Laboratories’ missions and are accessed through the SI/PDO.
These applications should be presentation and data storage independent, usually
have connections with other business objects, and may need to store and retrieve
information from the persistent store. As opposed to the Web client, business
objects provide an application-centered, fine-grained, stateful world view.

To achieve the concept of business objects, most legacy codes require wrap-
pers which handle the distributed object aspects of their use. The encapsulation
strategy should be a component-first approach which involves performing a do-
main analysis to generate an object model, identifying public interfaces for this
object model, and encapsulating the legacy application to populate the specific
functions of this public interface. A complete wrapper should perform connection
protocol management, data translation and information processing, error detec-
tion and recovery, and environment management, which includes insulation of
the users from changes and upgrades.

2.4 Knowledge Management

The final element of the architecture, data persistence, should ultimately take
the form of a knowledge management system. The value of Sandia’s information
assets requires more than just the ability to store and retrieve them in a dis-
tributed fashion. It should also be possible to dynamically match information to
specific processes or unknown situations and leverage that information to achieve
new results and insights into mission-related problems. Some key elements of a
knowledge management system include distributed object databases and associ-
ated tools for legacy data conversion, knowledge creation analysis, collaboration,
web content management, intelligent agent implementation, and visualization.
Functions which transform information into knowledge include capturing data
in an object repository and organizing it into a taxonomy which reflects the
SI/PDO business model, the ability to make information available to a knowl-
edge seeker, and the application of that knowledge to solve new problems.

3 Architectural Component Design

A generalized pictorial representation of the architecture is shown in Figure 1.
On the left is the desktop environment and on the right are the distributed
computing resources which are available. A Java-based applet running inside
the browser provides a prototype desktop environment. The designer uses this
common desktop environment to configure, link together, and launch various
applications, and each launched application transparently locates, connects to,
or acquires the appropriate distributed resources for that application.

For legacy codes, there are wrappers which allow older codes to become
network-aware and behave as distributed object services. For new codes, they
should be developed as network-based components from the start. The wrappers
represent business objects. Sandia’s business in this context includes applica-
tions such as solid modeling, meshing, finite element analysis, and visualization.
Some codes execute on workstations and others are launched on HP massively
parallel computers, depending upon the code’s requirements and the users’ needs.

Finally, data persistence and knowledge management are represented as a
PDO repository in Figure 1. Both the wrappers and the desktop are capable
of communicating with the PDO repository. All distributed communication is

performed using CORBA.

User Environment
(Single Network Node -
Unix or PC)

Design and Analysis Environment
(Distributed Network)

Thin Client) |
550 Dy oke [Model Design
R o

Thin Client Meshing

HNeshing», _ | Object Wrapper
Fmﬁt—E nd s%prse

Common Desktop | 4
Environment

Thin Client Vis Server

Visualization, _| Object Wrapper/
FrontEnd Servel

Applet
FEABGUI Object Wrapper g mEmEmEm, A
ava Bean L
T Finite Element [T ETARR
o ;
FEA ’/ PDO Repository]
Adapter [- ']

/

Fig. 1. Generalized SI/PDO Architecture for Modeling and Simulation

3.1 Desktop Components

User Interface Applet. Figure 2. illustrates a prototype display of the Web
Top interface. The desktop applet consists of three panels. The panel on the left
serves as a navigation panel and contains a tree of products and services available
to that user in the database. The panel on the right serves as a workspace panel
where the user can interact with the various services. If an application has a
GUI associated with it, this GUI can be displayed within the workspace panel.
In addition, images being sent from a visualization service may be displayed
here as well. The bottom panel serves as a status display for messages from both
desktop and distributed services.

Beans for Applications and Services. A PDO bean provides desktop ac-
cess to the database. It retrieves all of the PDO’s from the database and builds
the navigation tree. By selecting a product and service from the tree, the user
generates an event which causes the PDO bean to instantiate an application
or service bean. The names of the beans are available from the database, and
therefore, any new application or service can be plugged into the framework by
creating a bean for it which adheres to some minimal design patterns, and then
providing meta-data for the database about the new application or service. The
core framework code itself (applet and PDO bean) does not need to be modi-
fied. The creation of application and service beans allows the user to configure,

File Edil View G oo Help

& & 3 g » £ S & B
Bk Fovl Rl Hme Serh Gide Pl Sacuty S

[t

to A ocaton: iLe. iz =

IPDO Services: Gonfi d Gontrol
5 . —

"
=] [gt st {5 L a9 A2 |

Fig. 2. Browser-Based Prototype User Interface

launch, monitor, and display results for modeling, simulation, and analysis tasks
associated with a product.

Bean Adapters for Distributed Communication. As discussed above, each
application bean will normally include an adapter class for distributed commu-
nication. There are several advantages to using adapters. The adapter provides
a nice encapsulation mechanism for communication code and makes the design
more object-oriented in nature. This encapsulation subsequently allows for mul-
tiple implementations of the adapter without affecting the bean application code.
Such multiple implementations allow for different communication technologies
and protocols. Another advantage of an adapter is that it can be implemented
as a separate thread which prevents bottlenecks from occurring on the desktop.
When the user submits a request to the service, it can be carried out by this
thread without affecting the user’s ability to perform subsequent desktop inter-
actions. Finally, various multiplexing and queuing algorithms can be inserted
into adapters, allowing the user to batch requests to a service without having to
wait for one to complete before issuing another one.

3.2 Application and Service Components

Persistent Services. An object-oriented database is a key component of the
framework, maintaining information and methods for each product design and
analysis. A persistent CORBA interface to the database provides access from the
desktop or from applications which are running on workstation clusters or high

performance computers. This interface provides the operations needed to initiate
user sessions, launch applications and services, retrieve status, and manage the
information generated.

In addition, because some of the ORBs used by the framework may not
provide an automatic launching capability of application servers, it is necessary
for the framework to provide this so that desktop users do not have to deal with
such details. For the short term, this capability will be provided by a simple
CORBA-based Launch server which must be persistently active on machines
where applications are executed. This server implements a simple IDL interface
containing a single launch operation for starting up CORBA-based applications.

Finite Element Application Service. The Alegra application is a structural
dynamics finite element code written in C4++. It was selected as the first candi-
date application for the framework. It was made CORBA-aware so that it could
be accessed in a distributed fashion from the desktop using the Web Top aspects
of the framework. Therefore, an IDL interface was defined for Alegra operations,
and the object implementation of this interface, or Alegra wrapper, serves as a
front end to the Alegra software. The IDL interface provides operations for start-
ing an execution, retrieving status of the execution, and aborting or terminating
an execution.

Visualization Service. A spyglass service was developed which enables users
to view early results of a computation. It consists of a CORBA-based server
which awaits signals from an analysis code indicating that simulation time step
data is available. This data is accessed, the geometry of requested objects is
extracted and rendered into an off-line frame buffer (using the Mesa graphics
library, which is OpenGL-like), and a JPEG image is created from the frame
buffer. This image is sent both to the PDO and to the Web Top.

If the Web Top is active, it can perform remote navigation and request that
an image be regenerated from another perspective (i.e., camera position). A
Java3D-based object is present on the Web Top that contains a bounding box of
the objects in the image. Six degree-of-freedom navigation is possible within that
Java3D object, and the bounding box can be repositioned accordingly. When
the desired point-of-view of the bounding box is reached, the viewpoint trans-
formation matrix is extracted and sent to the spyglass service which uses it to
reposition the camera and render another JPEG image from that perspective.

3.3 Product Database Operator (PDO)

In the Sandia environment, the maintenance and accessibility of details regarding
the development of a complex product is vitally important. A primary reason
for this is accountability, but there is also the fact that certain products have a
very long projected lifetime and must occasionally be upgraded or have various
components replaced. FEach modification must undergo simulation testing with
the original parts of the product. Another aspect of this problem is the aging

workforce and the loss of expertise that comes with attrition. Often, it is just not
possible to return to the original designer or analyst of the product or component
for further information.

All of this leads to the necessity of keeping a repository with large amounts
of disparate information that should be easily accessible. Currently at Sandia
there are multiple established databases that store some of this information. The
databases are queried by the person needing the data, and then the query results
are manually combined with other data sources to accumulate all the information
necessary to complete the task at hand. This is a massive bookkeeping effort.

The Product Database Operator (PDO) is a software system which com-
bines the capabilities of a commercial Object Oriented Database Management
System (ODBMS) with a Common Object Request Broker (CORBA) server
to support an integrated, functional information repository. The PDO provides
persistent storage to establish, maintain, and make available programmatically
(to a CORBA client) product information, along with system, configuration, or
other details required. All of this information that is needed to execute simula-
tions, alter the design of any components, and incorporate new analysis methods
is made available without burdening the user with the task of remembering such
details. The need for such automation is accentuated by the potential for main-
taining numerous binaries and libraries for particular software due to the use of
heterogeneous systems, and by the utilization of remote, unfamiliar platforms as
they are made available through network expansion.

The PDO repository provides a valuable archive of product development
information and meta-data relating to evolution of a product and its compo-
nents. Complex persistent information objects capture the design state, recipe,
requirements, results, software tools, and access information for a legacy or in-
development product. Product information in the PDO includes not only the
specifics necessary to locate any information relating to the product, but also
includes methods to actually do the access or processing of a particular aspect
of the problem, such as starting a program or transferring a file to a needed
location. Methods can locate and deliver necessary inputs to the application
and receive and retain outputs from that application. Designers, analysts and
developers, each from their differing viewpoints, make use of the PDO to record
and deliver the detailed and changing information necessary to integrate data,
procedures, and locations for executing complex software applications and for
providing documentation of decisions made and lessons learned.

Product information can be linked together to form composite products and
to do regression testing on software modifications and upgrades. Products may
be analyzed with alternative software to not only validate the composition and
construction of the product, but also to validate and calibrate the analysis soft-
ware. Event notification is supported to enable active database functionality and
to synchronize steps of a process. The PDO can store documentation and help
files and maintain the status of an in-progress analysis. The use of shared objects
in the database enables certain information to exist in only one instance, im-
plying that a single database update will modify many information items. This

minimizes the impact of system upgrades and repartitioning, new development,
new hardware, and other changes inevitable in a dynamic, developing system.

4 Conclusions

The framework is currently in an initial prototype phase. A focused problem do-
main for the first implementation involves providing desktop access to the Alegra
finite element code executing on a Linux-based CPLANT Miata HP cluster. In
addition, the framework provides a visualization capability which feeds back
snapshots of data generated by Alegra at each time step. Figure 3. illustrates
the capabilities provided by the first framework prototype.

Web Top DESIRED CAPABILITIES: CPLANT Cluster

Intranet Beans Configuration Setvice 1 Computational

Il;naoﬁtcot: (snapshot & steer) D @ O
D00

i
i
Visualize Results !
i
E Alegra
H
i
i
H
i

ISSUES:

Performance a
Scaleability Algorithms
Security {MPI)

Fault Tolerance

000
000

Knowledge Management SGI Workstation Cluster

Adapters
(I0P)

ORB / Network
Services

= Viz
ther Repository Technologies Service Algorithms

Fig. 3. First Instantiation of the SI/PDO Architecture

On the Web Top are the components to configure, execute, monitor, and dis-
play results of an Alegra run. Coupled to the beans through the bean event model
are the adapters which handle the IIOP/CORBA protocol used to communicate
with application wrappers and the PDO. The PDO repository coordinates all
of the activities associated with a particular product development cycle. On the
CPLANT side, a launch service automatically launches application wrappers,
and wrappers exist for the Alegra and Visualization services. The Alegra service
is a front-end to the native Alegra code and has the capability to call CPLANT

services to load the code into the computational nodes, start execution, and mon-
itor status. The Visualization service encapsulates the visualization algorithms
for offline rendering and generation of JPEG images. Because the capability does
not yet exist to allow direct communication of data in parallel from applications
to visualization codes, Alegra generates files on shared file systems, and then
a CORBA-based Alegra status task is used to notify the Visualization service
when data is available for rendering. When the image is completed, CORBA is
again used to ship it back to the desktop where it 1s displayed.

There is obviously much work remaining in the development of the framework
and the overall SI/PDO architecture. The framework needs to be extended and
productionized for actual mission-based use. To do this more easily, reuseable
design patterns are being documented which can be applied to extrapolating
the framework for other applications, services, or problem domains. In addition,
further research and development will involve incorporating fault tolerant fea-
tures, investigating impacts of distance computing on some of the framework’s
architectural components such as the adapters and network protocols, looking
at performance, scalability, security, and other distributed resource management
(DRM) issues, and continuing the work on the PDO concept.

References

1. Baldeschwieler, J. E., R. D. Blumofe, and E. A. Brewer, ATLAS: An Infrastruc-
ture for Global Computing, Proceedings of the Seventh ACM SIGOPS European
Workshop on System Support for Worldwide Applications, 1996.

2. Baratloo, A., M. Karaul, Z. Kedem, and P. Wyckoff, Charlotte: Metacomputing on
the Web, Proceedings of the 9th Conference on Parallel and Distributed Computing
Systems, 1996.

3. Brecht, T., H. Sandhu, M. Shan, and J. Talbot, ParaWeb: Towards World-Wide
Supercomputing, Proceedings of the Seventh ACM SIGOPS European Workshop
on System Support for Worldwide Applications, 1996.

4. Camiel, N.; S. London, N. Nisan, and O. Regev, The POPCORN Project: Dis-
tributed Computation over the Internet in Java, 6th International World Wide Web
Conference, April 1997.

5. Christiansen, B. O., P. Cappello, M. lonescu, M. O. Neary, K. E. Schauser, and D.
Wu, Javelin: Internet-Based Parallel Computing Using Java, Department of Com-
puter Science, University of California, Santa Barbara, 1998.

6. Foster, 1., and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer Applications, 1997.

7. Grimshaw, A. S., W. A. Wulf, and the Legion team, The Legion Vision of a World-
wide Virtual Computer, Communications of the ACM, 40 (1), January 1997.

8. Litzkow, M., M. Livny, and M. W. Mutka, Condor - A Hunter of Idle Workstations,
Proceedings of the 8th International Conference of Distributed Computing Systems,
June 1988.

9. Vahdat, A., P. Eastham, C. Yoshikawa, E. Belani, T. Anderson, D. Culler, and M.
Dahlin, WebOS: Operating System Services For Wide Area Applications, Technical
Report CSD-97-938, UC Berkeley, 1997.

Molecular Dynamics with C++4. An object
oriented approach.

Matthias Muller

! Institute for Computer Applications I
Pfaffenwaldring 27,
D-70569 Stuttgart, Germany
matthias@ical.uni-stuttgart.de
? High Performance Computing Center (HLRS)
Allmandring 30
D-70550 Stuttgart, Germany

Abstract. The complexity of parallel computing hardware calls for soft-
ware that eases the development of numerical models for researchers that
do not have a deep knowledge of the platforms’ communication strate-
gies and that do not have the time to write efficient code themselves. We
show how “container” data structures can address the needs of many
potential users of parallel machines that have so far been deterred by
the complexity of parallelizing code. These example presented here is a
molecular dynamics simulation.

Our approach uses several ideas from the Standard Template Library
(STL). Particles are stored in a Template Container that also distributes
them among the processors in the parallel version. For the integration
applicators are applied to the particles. The force calculation is done by
a method ”for_each_pair” similar to ”"for_each” that takes an extended
applicator as an argument. This extended applicator takes two particles
as its arguments and is applied to every potential interaction pair.

1 Principles of Molecular Dynamics

The principle of a Molecular Dynamics (MD) program is: find the interaction
partners for every particle, calculate the forces between the particles and inte-
grate the equations of motion. A real MD program can be rather complex, i.e.
by using optimization techniques like linked cell algorithms for short range in-
teraction. Different MD programs need different types of particles with different
degrees of freedom and forces. Parallel computers with distributed memory add
another level of complexity: particles have to be distributed among the proces-
sors and interactions across processor boundaries have to be calculated.

With this in mind we developed a MD package for short range interaction. It
allows the easy modification of particle type, interaction force, and integration
scheme and allows to switch between the serial and parallel implementation
without changing the main program. We decided to use C++ and the Message
Passing Interface (MPI) for implementation because both are available on most

supercomputers as well as on the workstations where the code is developed. In
addition C++ was designed to have no or only a minimal runtime overhead
while still offering the advantages of an object oriented language.

The parallel paradigm applied here is domain decomposition (see Fig. 1),
therefore every CPU is responsible for a part of the domain and has to exchange
informations about the border of its domain with its adjacent neighbors. Instead
of exchanging them directly with all 8 or 26 neighbors in two or three dimensions
respectively the Plimpton scheme[l] is applied here (see Fig. 2).

Fig. 1. Domain decomposition. The cells of the linked cell algorithm containing data
that has to be shared with the neighbors (shadow cells) are in gray.

. IR T
- +.. ‘
R N S

Fig. 2. Plimpton scheme to exchange shadow cells.

2 Design of the particle container

To free the ordinary programmer from the details of bookkeeping and still pro-
vide him with the freedom to implement his own particle types, forces and inte-
gration scheme we decided to provide a template container for particles similar
to the containers that are provided by the standard template library (STL). In
addition to the normal members provided by a STL container a particle con-
tainer provides a template member for_each_pair to allow for iterations over
pairs of particles. Here the function object concept of STL is applied, the force
class has to supply an operator() for two particles:

template<class PARTICLE>
class Force{
public:
inline void operator()(PARTICLE & pl , PARTICLE & p2){
Vector force;
// calculation of f goes here
pl.force += force;
p2.force —= force; // actio = reactio
}
s

This example also demonstrates the possibility to formulate the algorithm in a
natural, dimension independent way. To avoid possible performance problems
due to the many small vectors used, we employ the template expression tech-
nique [2] to perform loop unrolling, inlining and other optimizations at compile
time.

The main loop of a MD simulation will look similar to this example.

PartContLC<Particle,3> box(1ll,ur,bound_cond,cut_off);
double dt=0.1; // time step
MD_int_vv_start<Particle> int_start(dt); // integration
MD_int_vv_finish<Particle> int_finish(dt);
while(t<maxT){
// velocity verlet integration first part:
for_each_particle(box.begin(),box.end(),int_start);
// force calculation:
box.update(); // communication
box.for_each_pair(myForce);
// velocity verlet integration second part:
for_each_particle(box.begin(),box.end(),int_finish);
// advance time:
t+=dt;
¥

In the STL algorithms and containers are separated as much as possible.
However, in order to have an efficient search algorithm for interaction pairs we

had to incorporate it into the container, much like the sort algorithm for lists
in the STL. The member function for_each_pair performs a pair search with
the well known linked cell algorithm. For debugging purposes there exists a
for_each pair(iterator,iterator,func object) that performs a brute force
N? loop across all pairs.

The integration in the code example above needs two function objects for
the velocity verlet integration:

template<class T>
class MD_int_vv_start{
public:
MD_int_vv_start(double adt=1.){dt=adt;7};
inline void operator()(T& p){
p.x += p.v*dt+ p.f*(0.5*dt*dt); // update position

p.v += p.£*(0.5%dt); // update velocity
p.-£=0.; // clear force
}
private:
double dt; // time step

};

template<class T>

class MD_int_vv_finish {

public:
MD_int_vv_finish(double adt=1.){dt=adt;7};
inline void operator() (P& p){

p.v += p.£*(.5%dt); // update velocity
}
private:
double dt; // time step

};

2.1 Latency hiding

To achieve latency hiding it was decided to group the communication in two
sections. First the communication for the first dimension 1s initiated by calls
to MPI_Isend. In a second stage this communication is completed and the calls
for all remaining dimensions are performed, allowing a partial overlap of com-
munication with computation. In the basic version of the template container
all communication is done in update. Now this call is split into update_init
and update wait representing the two stages of communication. In this appli-
cation the force calculation for particles that interact only with particles of the
core domain is performed between the first and the second stage. The optimized
container provides the calls for_each_inner pair and for_each _bound_pair to
calculate the pairwise interaction for the corresponding domains.

3 Performance

3.1 Comparison between C and C++

While recent benchmarks have shown that C++ can compete with C or For-
tran [3] it is not clear whether this holds for a particular application. Because
performance depends on the abstraction techniques used [4,5] it is a non trivial
task to find a suitable balance between certain techniques and performance. Be-
cause the force calculation is the most time consuming part in an MD simulation,
the danger of an abstraction penalty at this point is high.

5000 ‘ | | | |
o | C++ (P3T) —— |
4000 e
3500 /////*////“/,, |
3000 |« |
2500 |
2000 | |
1500 | |
1000 | |
500 | A

total CPU time [s]

0 100 200 300 400 500
PEs

Fig. 3. Total runtime of two different Molecular Dynamics programs depending on the
number of PEs.

To get an estimate of the performance penalty of using C++ and its ab-
straction we made a comparison with a program (imd) written in C that was
developed independently [6]. The basic linked cell algorithm is the same. For a
simulation of a Lennard-Jones fcc crystal with 442368 atoms the C4++ version
is between 3 percent slower and 20 percent faster. There are several reasons
why the speed up of the C+4 program is worse. First, latency hiding is applied
and its advantage is lost rapidly with decreasing numbers of particles. Second,
Newton’s third law is not applied across PE boundaries. This increases the work-
load on a single PE and results in larger overall runtimes when the cost of the
additional communication for exchanging forces is negligible. For large particle
numbers the overlapping of communication and computation will also overcome
performance problems due to possible congestion of the T3Es network [7].

3.2 Performance between different compilers

While C4++4 was designed to have only minimum runtime overhead, the actual
abstraction penalty does not only depend on the abstraction level used, but also

on the optimization technique of the compiler. Fig. 4 gives an impression of the
differences we observed between different compilers. There is a factor of more
than three between the best and worst optimizing compiler.

But using the best compiler is not enough. We observed a similar performance
penalty when upgrading from KCC 3.2 to KCC 3.3. The reason was that with
KCC 3.3 exception handling was turned on by default. Using a compiler switch to
disable exception handling we were back to the old performance. This can not be
intrinsic to exception handling because cxx does show good performance while
still providing exception handling. Obviously some important optimizations are
affected.

Compiler flags
SUN CC 4.2 -fast
DEC cxx 6.x -O5 -tune host -ieee -assume noaccuracy_sensitive

IBM xIC 3.1.4 -03
Cray CC 3.0.1.3-03
KAI KCC 3.2 +K3-03
GNU gcc 2.7.2 -03
Table 1. Optimization flags used for the different compilers.

35 b

15 b

05 b

SUN CC DEC cxx IBM xIC CRAY CC KAI KCC GNU gcc

Fig.4. Runtime of a MD program with different compilers relative to runtime using
KAI KCC. The runtime with KAI KCC 3.2x is set to one, because it is available on
all platform. The value for GNU gcc is the average from two platforms (Digital Unix
(3.4) and SUN Solaris (3.7)).

4 Conclusion

We have shown that object-oriented concepts help to design flexible, portable and
easy-to-use tools for molecular dynamics. In particular, judicious application of
the template and inlining mechanisms of C4++ can lead to program performance
at par or only slightly worse than that of classical procedural languages. In
several cases, the container abstractions described above have proved to yield
programs easily portable to parallel platforms and between 2 and 3 dimensions.

As an technical aside we see that the use of optimizing C+4 compilers is often
severely hampered by the available memory and file transfer rates. In addition,
on the software side, compiler vendors only recently support the important new
features of C4++ specified in the ANSI/ISO standard.

I acknowledge financial support of the SFB 382 and the institute of computer
application 1 (ICA1) where this software has been developed. T also would like
to thank several colleagues at the ICA1 who take an active part in developing
and improving the described software, among others Kai Hofler, Oliver Kitt,
Christian Manwart, Reinmar Muck, Gerd Sauermann, Stefan Schwarzer.

References

1. Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Jour-
nal of Computational Physics, 117:1-19, 1995.

2. Todd Veldhuizen. Expression templates. C++ Report, pages 26-31, June 1995.

3. Todd Veldhuizen. Scientific computing: C++ vs. Fortran. Dr. Dobb’s Journal,
November 1997.

4. Scott Haney. Is C++ fast enough for scientific computing? Computers in Physics,
8(6):690-694, Nov/Dec 1994.

5. Arch D. Robison. C++ gets faster for scientific computing. Computers in Physics,
10:458-462, 1996.

6. J. Stadler, R. Mikulla, and H.-R. Trebin. IMD: A software package for molecular
dynamics studies on parallel computers. Int. J. Mod. Phys. C, 8:1131-1140, 1997.

7. Matthias Miller and Michael Resch. Pe mapping and the congestion problem on
the T3E. In Hermann Lederer and Friedrich Hertweck, editors, Proceedings of the
Fourth European Cray-SGI MPP Workshop, pages 20-28. IPP, Garching, Germany,
September 1998. see http://www.rzg.mpg.de/mpp-workshop/proceedings.html.

Simulating and Modeling in Java

Augustin Prodan!, Florin Gorunescu?, and Radu Prodan?

! Tuliu Hatieganu University, Cluj-Napoca, aprodan@umfcluj.ro
2 University of Medicine and Pharmacy, Craiova, gorun@medinf.comp-craiova.ro
University of Basel, prodan@ifi.unibas.ch

Abstract. The purpose of this paper is to present preliminary results
of an experimental work concerning the possibilities offered by Java lan-
guage for simulating and modeling applications. It describes an object-
oriented approach to the simulation of the random variables by means
of clasical distributions. The theoretical fundamentals for the things im-
plemented are also given. An application which shows a model for the
flow of patients around departments of geriatric medicine is presented.
Future research effort will be oriented towards model analysis by use
of simulation study, exploratory data analysis, statistical data mining,
queuing models and visualizations.

1 Introduction

Previous research has shown that stochastic models are advantageous tools for
representation of the real world [6]. Based on theoretical fundamentals in stochas-
tic modeling [5], we intend to make an incremental development of an object-
oriented Java framework containing the main elements for building and imple-
menting stochastic models. This is an experimental method developed in the
Department of Mathematics and Informatics, Tuliu Hatieganu University Cluj-
Napoca, in collaboration with the University of Medicine and Pharmacy Craiova.
The models are fitted to data from actual medical and pharmaceutical settings.
We incorporated methods for simulating and modeling the flow of patients in
the departments of geriatric medicine. The population of geriatrics in a given
hospital district is relatively stable and therefore we may model the movement of
geriatric patients by considering both their entrance into the hospital and their
stay in the geriatric unit. The need for a realistic model to represent the length
of stay of geriatric patients in a unit, is recognized by physicians, health care
and hospital administrators. However, early models did not consider the differ-
ence between acute and chronic care patients and thus the mean time a patient
spent in the department was used as a performance indicator. The difference
between acute and long-stay care patients led to the development of compart-
mental deterministic discrete-time model, considering acute and long-stay care
as compartments in the geriatric department [3]. While the deterministic ap-
proach enables the calculation of means of geriatric patients requiring hospital
care, the stochastic model also enables one to extract variances by taking into
account patient variability hence allowing the variations inherent in individual

behaviour to be quantified. Once the model has been shown accurately to rep-
resent the movement of geriatric patients, given expert knowledge of feasible
changes to the system and their associated costs, the theoretical effects of mod-
ifications to the system may be calculated and assessed without actually having
to implement the changes. Furthermore, the implementation of the respective
changes could also prove to be quite costly. It is therefore possible to maximize
the efficiency of the geriatric unit, thus allowing for the optimization of the use
of hospital resources which can, in turn, improve health care in the hospital.

2 The Fundamentals of Simulation in Java

2.1 The Simulation of Random Numbers in Java

The basis of a simulation study are the random numbers. Most computer lan-
guages have a built-in random number generator. The numbers generated this
way are not random as they are deterministically computed via some mathe-
matical formulae. This is the reason they are sometimes called pseudo-random
numbers. However, such numbers can be used to simulate random numbers, be-
cause they have the appearance of being random values uniformly distributed on
interval (0,1). Moreover, these numbers can be used to generate random num-
bers on any interval. For this reason, in this paper we refer to them as random
numbers.

Java provides the following facilities to generate random numbers [4]:

The Class java.util.Random — An instance of this class can be used to
generate a stream of random numbers based on a linear congruential formula
[2].

The Method java.lang.Math.random() — This method is a simpler way of
using the one above, by making use of the default constructor. When this
method is first called, it creates a single new random number generator,
which is then used for all calls to this method and nowhere else. It returns a
random number uniformly distributed on interval [0.0, 1.0), in format double
precision.

2.2 The Simulation of Classical Distributions

The classical random variables are the most simple stochastic models, so called
distributional models, which enter into the composition of other complex mod-
els. It stands to reason that it is necessary the development of some techniques
to simulate the values of random variables with various distributions. This is
likely because they frequently appear in applications.

A hierarchy of classes which models the clasical distributions is proposed. The
hierarchy is shown in Fig. 1 using an Inverted Tree Diagram. Each distribution
is determined by a set parameters and a distribution function [5]. Based on these
elements, a polymorfic method called simValue() is specified and specialised by
each distribution class in turn, in order to simulate a specific value. An instance

of a particular class can be used to simulate a set of values for the corresponding
random variable, by calling the simValue() method as many times as needed.

Distribution
iny aluel]
[|
DistributionDiscrete DigtributionContinuous
gimt alue() gimt alue()

[I I I I
DiztribBinarmial DiztribPoizzon DiztribGeometric | | DistibDizcU niform DiztribE sponential
parameters: n, p || parameter: lambda| |parameter; p parameter: n parameter: lambda
iny aluel] iny aluel] iny aluel] gimt alue() gimt alue()

Fig. 1. The Hierarchy of Classes for Clasical Distributions

The particular implementation for each class is based on one or more of the fol-
lowing techniques: the Inverse Transform Technique, the Acceptance-Rejection
Technique and the Composition Technique [5].

The Inverse Transform Technique — This technique is based on the follow-
ing theorem [5]:

Theorem 1. If U is a uniform (0, 1) random variable, then for any dis-
tribution function F, the random variable X defined by X = F~*(U) has
distribution F.

This theorem shows that one can simulate a random variable X with dis-
tribution function F' by generating a random number U and then setting
X = F~Y(U). The Inverse Transform Technique is used to simulate a dis-
crete random variable (binomial BIN(n,p)), as shown in subsection 3.1,
and a continuous random variable (exponential EX P(A)), as presented in
the subsection 4.1.

The Acceptance-Rejection Technique — An efficient method for simulating
a random variable with density function g() is important in that it can be
used as a basis for simulating another random variable with density function
f(z). If ¢ is a constant for which we have g(—z) < ¢, Va such that g(z) # 0,
the acceptance-rejection algorithm for simulating the random variable with
the density function f(z) can be expressed as follows [5]:

1. Simulate a value for random variable Y having density function g(z);
2. Simulate a random number U;

3. U< %%,l), set X =Y, otherwise go to step 1.

The following theorem asserts that the previous algorithm works well [5]:

Theorem 2. The random variable X simulated by acceptance-rejection tech-
nique has the density function f(x). The number of iterations that are needed
to stmulate a value is a geometric random variable with mean c.

The subsection 4.2 shows how acceptance-rejection technique 1s used to sim-
ulate the normal random variable.

The Composition Technique — If F;, 7 = 1,2, ..., n are distribution functions
and p;, ¢ = 1,2,...,n are nonnegative numbers so that Zle pi = 1 then
the distribution function F given by F(z) = .\, p; F;(x) is said to be
a composition, or mizture, of the distribution functions F;, i = 1,2,...,n.
A method to simulate from F' is to simulate a random variable I, so that
pi=P{I=1i} =p;,i=1,2,...,nand then to simulate from Fy. That means,
if the simulated value of [is I = k, then the second simulation is from Fj.
The composition technique is presented in subsection 5.3.

3 The Simulation of Discrete Random Variables

This section describes the implementation of the Inverse Transform Technique to
simulate a random variable using the binomial distribution. This is represented
by the class DistribBinomial. In a similar manner, classes for the Poisson,
geometric and discrete uniform distributions can be designed and implemented.

3.1 Binomial Random Variable

A binomial random variable X with parameters n and p has the probability
mass function: p; = P{X = i} = Cip'(1 —p)"~% i = 0,1,2,...,n. The key of
using the inverse transform technique to simulate such a random variable is the
following recursive identity:

With i denoting the value currently under consideration, pp = P{X = i} and
F = F(i) = P{X < i}, the algorithm can be expressed as follows:

Simulate a random number U;
Initializations: rap = 1’%}), i=0,pp=(1—-p)", F=pp
If U < F,set X =i and stop;

Recursion: pp = rap?T_fpp, F=F+4pp,t=1i+1, then go to step 3.

e 0 N

The Java algorithm which implements the method simValue() inside the class
DistribBinomial, is shown in Fig. 2.

The algorithm can be improved upon when the mean np is large. Since a binomial
random variable with mean np is most likely to take on one of the values closest
to np, a more efficient algorithm would first check one of these values, then search
downward in the case where X < np, or upward otherwise.

public class DistribBinomial extends DistributionDiscrete {
int n; // number of trials.
double p; // probability of success.

public double simValue() { // Simulate a value

double U, rap, pp, F, i=0;

U = Math.random() ;

rap = p/(1-p);

pp = Math.exp(n*Math.log(1-p)); // P{X=0}

F = pp; // F(0) = P{X=0}

while (U > F) {
pp = (rapx(n-i)/(i+1))*pp; // recursion
F = F + pp; // F(i)=P{X<=i} distribution function
i++;

}

return i;// Return the simulated value
} // simValue()
Y /7

Fig. 2. The Class DistribBinomial

3.2 Simulated versus Theoretical Values

The way to verify the accuracy of a particular simValue() method is to compare
the simulated results with theoretical ones. A Java applet provides this facility
in the case of discrete distributions. An instance of a discrete distribution class
is used to generate a sequence of N independent values for the corresponding
random variable. The doSimulation() method, shown in Fig. 3, serves this
purpose. In Java all method bindings happen polymorphically via late binding,

void doSimulation(DistributionDiscrete dis) {
for (int k=0; k<N; k++) {d[(int)dis.simValue()]++;}
¥

Fig. 3. The Simulation and Counting of N Values for a Discrete Distribution

so the method simValue() can talk to the base class DistributionDiscrete,
and all derived-class cases will work correctly using the same code. The generated
values for a random variable X are stored in the array d[X]. With a visualization
method, the elements of this array are expressed graphically in a column format,
as shown in the left graphs of the Fig. 4, 5, 6 and 7. The right graphs of the
same figures are columns representing the corresponding theoretical values for
the same distributions, proportionally with probabilities p;, ¢ > 0. By selecting
various discrete distributions while the applet is running, one can compare the
simulated results with the theoretical values.

SIMULATED RESULTS THEORETICAL WALUES
256

o 0
011 0
Fig. 4. Binomial Distribution BIN(11, 0.3), for N=1000 Values
SIMULATED RESULTS THEORETICAL VALUES
260 244
220
1 0 10
g 70 o 7T Z 3 4 5 & 7 8§ § T0

Fig. 5. Poisson Distribution POI(2.7), for N=1000 Values

SIMULATED RESULTS THEORETICAL VALUES
603 600
24 240
100 96
2955 3 1 4 3 15 g 0o
T2 3 ¥ 5% & 7 ¥ 7 T2 34 T8 q

Fig. 6. Geometric Distribution GEO(0.6), for N=1000 Values

SIMULATED RESULTS THEORETICAL VALUES
1a8 201 qgg 216 qgp 200 200 200 200 200
T pi 3 T 5 T 7 K ! 5

Fig. 7. Discrete Uniform Distribution DU(5), for N=1000 Values

4 The Simulation of Continuous Random Variables

4.1 Exponential Random Variable

An exponential random variable with rate A > 0 (mean %) has the probability
density function f(z) = Ae™7, and the distribution function F(z) = 1 — e~ 7",
for 0 < & < oo. If we let u = F(z) = 1 —e™ 7, it is easy to verify that « =
F~1(u) = —%ln(l — u). Noting that if U is uniform on (0, 1), then 1 — U is
also uniform on (0, 1), and the inverse transform algorithm for simulating an
exponential random variable with parameter A can be expressed as follows:

1. Simulate a random number U;

2. Set X = —%ln(U).

This algorithm is implemented by the method simValue() inside the class Dis-
tribExponential (Fig. 8).

public class DistribExponential extends DistributionContinuous {
double lambda; // parameter for exponential distribution(rate)

public double simValue() { // Simulate a value
double U = Math.random() ;
return -1/lambda*Math.log(U);
} // simValue()
Y /77

Fig. 8. The Class DistribExponential for FExponential Random Variable

4.2 Normal Random Variable

A unit normal random variable Z(with mean 0 and variance 1) has the prob-

2

ability density function f(z) = \/%6_7, 0 < < oo. To simulate a value

for Z we apply the acceptance-rejection technique using as g(x) the exponen-

tial density function with A = 1, that is g(x) = ¢™%, 0 < & < oco. It is easy
f(z)

to verify that maximum value of o(zy occurs when © = 1, so we can take
z2 (z— }2

c = max%% = gl(% = +/2em. Because % — T = T , the

acceptance-rejection algorithm for simulating X = |Z]| (the absolute value of

a unit normal) can be expressed as follows [5]:
1. Simulate Y, an exponential random variable with parameter A = 1;
2. Simulate a random number U;
_(y—1)? .
3. U<e 7 set X =Y, otherwise go to step 1.
As the density f(x) is an even function, the previous algorithm simulate the

absolute value of a unit normal distribution. To obtain a unit normal distribution
we set Z be equally likely to be either X or —X.

5 A Model for Geriatric Medicine

5.1 Generalities

The population of geriatrics in a given hospital district is relatively stable and
therefore we may model the movement of geriatric patients by considering both
their entrance into the hospital and their stay in the geriatric unit. Admissions
are modeled as a Poisson process with parameter A (the arrival rate), estimated
by using the observed inter-arrival times. Previous research has shown that the
flow of patients around compartments of geriatric medicine may be modeled by
the application of a mixed-exponential distribution, where the number of terms
in the mixture corresponds to the number of stages of patient care. A common
scenario is that there are two stages for in-patient care: acute and long-stay.
The difference between acute and long-stay patients has led to the development
of a compartmental deterministic discrete-time model, considering acute and
long-stay care as compartments in the geriatric unit. The use of stochastic com-
partmental analysis [6], which assumes probabilistic behaviour of the patients
around the system, is considered a more realistic representation of an actual
situation rather than the simpler deterministic model. In order to simulate the
model, we have split it into two parts: the Poisson arrivals and the in-patient
care.

5.2 Simulating Admission as a Poisson Stream in Continuous Time

The arrival of patients is modeled by a Poisson process at rate A= 2.75 patients
per month with the corresponding density f(z) = Ae™*® z > 0. Incorporating
the results provides one way in which to simulate the inter-arrival times. This is
accomplished by examining the times between events for such a process. These
times are independent exponential random variables, each with rate A. For this
purpose we use instances of the class DistribExponential, described in subsec-
tion 4.1. To simulate the first T time units of a Poisson process, it is necessary to
simulate the successive inter-arrival times, stopping when their sum exceeds T'.
A Java applet called arrivalsPoisson, which incorporates the statements pre-
sented in Fig. 9, performs a graphical simulation of monthly arrivals is used the.
The number of arrivals occurring in each month are counted in corresponding
elements of the array P[]. Running this applet with parameter 7' = 12 (one
year), one can visualise monthly arrivals for a period of one year, the results
bearing the semblance of those in Fig. 10.

5.3 Simulating the In-Patient Care Time

The in-patient care — acute and long-stay — is modeled as a mixed-exponential
phase-type distribution, using the composition technique (see subsection 2.2)
with the density f(z) = pai1e™®" + (1 — p)age™***, > 0, where p = 0.93,
a1 = 0.04 and as = 0.001, which implies a mean care time of pl + 1a 2 5 93. 25
days per patient. Fig. 11 shows how the composition of classes paradlgm [1] is

double t=0, T=12, lambda=2.75;
DistribExponential de = new DistribExponential (lambda);

for (int k=0; t<(double)T; k++) {
t =t + de.simValue(); // increment with inter-arrival time
PL(int)t]++; // Increment patients number for corresp. month.

Fig. 9. The Simulation of a Poisson Process with Rate A = 2.75

i : 5 5
Patients: 4 4 4

2 2 2
1 1

I
Month: Jan Feb Mar Apr May Jun Jul Aug Sep oOct FHow Dec

Fig. 10. The Poisson Arrivals at Rate A = 2.75 per Month, for One Year

used to implement the composition algorithm for simulating the in-patient care
time.

double t=0, U, alfal1=0.04, alfa2=0.001, ro=0.93;
DistribExponential el = new DistribExponential(alfal);
DistribExponential e2 = new DistribExponential(alfa?2);

for (int k=0; k<n; k++) {
U = Math.random() ;
if (U<ro) {t = el.simValue();}
else {t = e2.simValue();}
S[k] = (int)t; // care time for patient k (in days)

Fig.11. The Simulation of Care Time as a Mixed Exponential Distribution

The n variable stores the number of patients. The array S[] is used to register
the care time in days for patients. The care time for each patient is counted in
the corresponding element of the array S[]. Running the sequence presented in
Fig. 11 with parameter n = 15, the results appear as in Fig. 12.

Once the model has been shown to accurately represent the movement of geri-
atric patients, given expert knowledge of feasible changes to the system and the
costs associated, the theoretical effects of modifications to the system may be
calculated. Furthermore, the costs can be assessed without having to implement
the changes in a real setting, which could be costly. Therefore, it is possible to
maximize the efficiency of the geriatric department, thus optimizing the use of
hospital resources, in order to improve hospital care.

Care time
(days)

Patients:

Fig. 12. The Simulated Results for In-Patient Geriatric Care Time

6 Conclusions

The paper describes some results obtained in research concerning the possibili-
ties offered by Java language for simulating and modeling applications. A set of
base line classes for simulation of classical distributions were introduced. Based
on their design and implementation, a model was created which accurately rep-
resents the movement of geriatric patients. Both geriatricians and hospital ad-
ministrators agreed that such a model can be used to maximize the efficiency of
the geriatric department and to optimize the use of hospital resources in order
to improve hospital care. The two simulations presented in section 5 need to be
integrated within two threads inside the same application process. We intend to
continue the incremental development with new classes for implementing simula-
tion and model techniques. A model for estimating tumor sizes by using the Hit
or Miss Monte Carlo integration will be created. Future research effort will be
also oriented towards the development of new models, model analysis, statistical
data mining, and visualisations.

References

1. Bruce Eckel. Thinking in Java. President, MindView Inc., Prentice Hall PTR, 1998.

2. Donald E. Knuth. The Art of Computer Programming, vol 2. Addison-Wesley
Publishing Company, 1973.

3. G. Harrison, P. Millard Balancing acute and long-term care: the maths of throughput
in departments of geriatric medicine, Math. Inform. Med., 30, 221-228, 1991.

4. Augustin Prodan, Mihai Prodan. Mediul Java pentru Internet. Ed. ProMedia-plus,
Cluj-Napoca, 1997.

5. Sheldon M. Ross. A Course in Simulation. Macmillan Publishing Company, New
York, 1990.

6. G. Taylor, S. McClean, P. Millard. Continuous-time Markov models for geriatric
patient behaviour. Appl. Stochastic Models Data Anal, 13, 315-323, 1998.

