000155183 001__ 155183
000155183 005__ 20210129214032.0
000155183 0247_ $$2doi$$a10.1016/S0927-5452(98)80071-3
000155183 0247_ $$2Handle$$a2128/11928
000155183 037__ $$aFZJ-2014-04364
000155183 1001_ $$0P:(DE-Juel1)132045$$aAttig, N.$$b0$$eCorresponding Author$$ufzj
000155183 1112_ $$aInternational Conference on Parallel Computing$$cBonn$$d1997-09-16 - 1997-09-19$$gParCo 1997$$wGermany
000155183 245__ $$aHighly optimized code for lattice quantum chromodynamics on the CRAY T3E
000155183 260__ $$bElsevier$$c1998
000155183 29510 $$aParallel Computing: Fundamentals, Applications and New Directions
000155183 300__ $$a557 - 564
000155183 3367_ $$2ORCID$$aCONFERENCE_PAPER
000155183 3367_ $$033$$2EndNote$$aConference Paper
000155183 3367_ $$2BibTeX$$aINPROCEEDINGS
000155183 3367_ $$2DRIVER$$aconferenceObject
000155183 3367_ $$2DataCite$$aOutput Types/Conference Paper
000155183 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1408516400_5996
000155183 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000155183 4900_ $$aAdvances in Parallel Computing$$v12
000155183 520__ $$aIn lattice quantum chromodynamics, large systems of linear equations have to be solved to compute physical quantities. The availability of efficient parallel Krylov subspace solvers plays a vital role in the solution of these systems. We present a detailed analysis of the performance of the stabilised biconjugate gradient (BiCGStab) algorithm with symmetric successive over-relaxed (SSOR) preconditioning on a massively parallel CRAY T3E system.
000155183 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000155183 588__ $$aDataset connected to CrossRef Book, juser.fz-juelich.de
000155183 7001_ $$0P:(DE-HGF)0$$aGüsken, S.$$b1
000155183 7001_ $$0P:(DE-HGF)0$$aLacock, P.$$b2
000155183 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b3$$ufzj
000155183 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b4
000155183 7001_ $$0P:(DE-HGF)0$$aUeberholz, P.$$b5
000155183 7001_ $$0P:(DE-HGF)0$$aViehoff, J.$$b6
000155183 773__ $$a10.1016/S0927-5452(98)80071-3
000155183 8564_ $$uhttps://juser.fz-juelich.de/record/155183/files/ib-9822.pdf$$yOpenAccess
000155183 8564_ $$uhttps://juser.fz-juelich.de/record/155183/files/ib-9822.gif?subformat=icon$$xicon$$yOpenAccess
000155183 8564_ $$uhttps://juser.fz-juelich.de/record/155183/files/ib-9822.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000155183 8564_ $$uhttps://juser.fz-juelich.de/record/155183/files/ib-9822.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000155183 8564_ $$uhttps://juser.fz-juelich.de/record/155183/files/ib-9822.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000155183 909CO $$ooai:juser.fz-juelich.de:155183$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000155183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132045$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000155183 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155183 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155183 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155183 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000155183 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000155183 980__ $$acontrib
000155183 980__ $$aVDB
000155183 980__ $$aUNRESTRICTED
000155183 980__ $$acontb
000155183 980__ $$aI:(DE-Juel1)VDB62
000155183 980__ $$aI:(DE-Juel1)JSC-20090406
000155183 9801_ $$aFullTexts
000155183 981__ $$aI:(DE-Juel1)JSC-20090406