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In lattice quantum chromodynamics, large systems of linear equations have to be solved
to compute physical quantities. The availability of efficient parallel Krylov subspace
solvers plays a vital role in the solution of these systems. We present a detailed analysis
of the performance of the stabilised biconjugate gradient (BiCGStab) algorithm with
symmetric successive over-relaxed (SSOR) preconditioning on a massively parallel CRAY
T3E system.

1. Lattice Gauge Theory Computations

The numerical investigation of quantum chromodynamics (QCD) on a four-dimensional
space-time grid is one of the grand challenges in high-performance scientific comput-
ing [1]. QCD is generally considered to be the fundamental theory which describes the
strong forces binding quarks with gluons to form the known hadrons like the proton or
neutron [2]. Even after 20 years of research, QCD still has not been solved in a non-
perturbative analytical approach, and it is by now widely believed that the controlled
numerical treatment of the theory on the lattice on very fast parallel supercomputers is
the only viable scheme to extract quantitative physical results [3]. The results from lattice
gauge theory (LGT) simulations are urgently needed as theoretical input for current and
future accelerator experiments that attempt to observe new physics beyond the Standard
Model of elementary particle physics [4].

LGT computes functional integrals using Monte Carlo methods known from statistical
physics [5]. A representative ensemble of field configurations is generated by a Markov pro-
cess (simulation phase). These configurations are subsequently analysed by constructing
(and averaging over) hadronic correlators from quark Green’s functions (analysis phase).

∗Talk presented by P. Ueberholz.
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The correlators then serve to extract physical observables of interest like hadron masses
and decay constants.

2. The numerical problem and computational effort

The collaborations SESAM2 [6] and TχL3 [7] are two large-scale projects [8] which want
to study full QCD with two flavours of dynamical Wilson fermions following the method
described above. This task needs high-performance computers which are also able to
handle Tbytes of data.

First, a representative ensemble of gauge field configurations on a space-time lattice is
generated using a Hybrid Monte Carlo (HMC) algorithm on the parallel supercomputer
APE100/Quadrics (simulation phase). The SESAM simulation (163

× 32 lattice) has
taken place on a 256-node machine with a theoretical peak performance of 12.8 Gflops
in DESY/Zeuthen, while the TχL production (243

× 40 lattice) is still continuing on two
512-node systems (peak performance of 25.6 Gflops) in Rome and DESY/Zeuthen. The
total computer time used so far is about 250 Tflop hours.

The analyses of these gauge field configurations are performed on a CRAY T3E (512
nodes, 300 Gflops peak performance) installed at the Research Centre Jülich. In the
analysis phase the most time-consuming part is the frequent computation of the QCD-
Green’s functions as solutions of huge sparse systems of linear equations [9] on each gauge
field configuration

Mψ = φ , (1)

where φ is some input vector, M is the Dirac fermion matrix and ψ the required solution.
From the solution (quark propagator) we can then investigate the properties of hadrons
by constructing the appropriate hadronic correlators. For the choice of lattice fermions
considered here, namely the so-called Wilson fermions, (1) has the explicit form

ψ(x)c
α − κ

4∑

µ=1

(U−µ(x)c,c′m−µ,α,α′ψ(x− µ)c′
α′ + Uµ(x)c,c′mµ,α,α′ψ(x+ µ)c′

α′) = φ(x)c
α , (2)

where Uµ(x)c,c′ is an SU(3) matrix for the gauge field (gluon) with a three-component
colour index c, computed in the simulation phase, ψ(x)c

α is a 4 × 3 complex matrix for
the particle (quark) with four Dirac components α, and m is a 4 × 4 matrix containing
the spin components. The index x runs over all space-time lattice points (4 dimensions).
In particular, M is a non-hermitian complex sparse matrix with the following structure:

• 1 in the diagonal.

• 8 non-diagonal 12 × 12 matrices (nearest neighbours in space-time).

• Each 12×12 matrix is a tensor product of an SU(3) matrix U times the Dirac 4×4
matrix m.

In order to solve this system of linear equations we apply Krylov subspace solvers4, com-
plemented by preconditioning techniques.

2Sea Quark Effects in Spectrum and Matrix Elements
3Towards the chiral Limit
4The coefficients of the regular sparse matrix are related to a stochastic background gauge field, hence

multigrid methods are not efficient here!
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3. Inversion algorithms

The class of Krylov subspace iterative methods for solving (1) is characterised by the
following generic form:

1. choose an initial guess ψ0 and set r0 = φ−Mψ0 ,

2. compute iteratively ψm of the form ψm = ψ0 + q(m−1)(M)r0.

Here q(m−1)(M) is a polynomial of degree < m. Examples are the conjugate gradient or
the minimal residual algorithms. At present, the state-of-the-art method for inverting the
fermion matrix is the stabilised biconjugate gradient (BiCGStab) algorithm [10].

Further improvement of the inversion algorithm can be obtained by using precondi-
tioning techniques, which should reduce the number of iterations and computing time
necessary to achieve a given accuracy. To precondition (1) we take two non-singular ma-
trices V1 and V2 which act as left and right preconditioners respectively, i.e. we replace
(1) by

Mψ = φ −→ V −1
1 MV −1

2 ψ̃ = φ̃ (3)

The matrix V = V1V2 is called the preconditioner. The efficiency of the preconditioning
method depends on how good an approximation V is of M , as well as the computational
overhead entailed in the method: solving systems with V1 and V2 should be cheap.

Currently the most efficient way is to use SSOR preconditioning (for details see [11,12]):

V1 = I − L; V2 = I − U (4)

with M = I − L− U , I the diagonal part, L the strictly lower triangular part and U the
strictly upper triangular part. The convergence rate depends on the ordering of the sites
on the lattice.

In case of even-odd ordering, where one labels all even sites before the odd ones on
each processor like a checkerboard (Fig. 1), the preconditioned matrix V −1

1 MV −1
2 can be

computed explicitely. For larger sub-systems we use parallel SSOR preconditioning. In
particular, the sub-blocks have the same size as the partitions of the lattice assigned to a
processor. Thus, in parallel SSOR, the parallelism is adapted to the parallel system. The
use of the Eisenstat trick is essential:

V −1
1 MV −1

2 = (I − U)−1 + (I − L)−1(I − (I − U)−1) (5)

In this way the SSOR preconditioning is about as expensive as the multiplication Mψ,
because both (I − L)x = y (forward solve) and (I − U)x = y (backward solve) are easy
to solve.

The largest vector computed in the SESAM and TχL projects is of a size of 12 Mwords.
This number is given by the volume factor (e.g. 243

× 40), the four Dirac components,
three colour components, and a factor 2 due to complex elements. As a consequence, we
are faced in the analysis phase, where about ten thousand configurations have to be used
for calculating the propagators, with a requirement of about 10 Teraflop hours computing
time on the order of 1 Terabyte of data. It is therefore evident that optimization of
the QCD analysis codes on parallel supercomputers is mandatory in order to carry out
ambitious computations of this kind efficiently.
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4. CRAY T3E architecture

The CRAY T3E, which is the second generation of Cray Research MPP systems, is
the ideal machine for this kind of application. It is a fully scalable MIMD system with
distributed memory and global address space. The application processing elements (ap-
plication PE) are connected by a network which has the topology of a three-dimensional
torus. The system is self-hosting and scalable from 8 to 2048 PEs. For every 16 application
PE an operating system node (OS PE) is required.

Each processing node is equipped with a DEC Alpha EV5 microprocessor with a clock
rate of 300 MHz. The instruction rate is up to 4 per clock cycle (2 floating-point, 2
integer/logic) which results in a peak performance of 600 Mflops. The microprocessor
uses IEEE 64-bit arithmetic. Furthermore, each microprocessor has 3 on-chip caches: one
8 KByte data cache (Dcache), segmented into 256 cache lines with 4 64-bit words each,
one 8 KByte instruction cache (Icache) with the same segmentation and one 96 KByte
secondary cache (Scache), separated in 3 associative sets of 512 cache lines each, serving
either Dcache and Icache. The load latencies are 2 clock periods (CP) from Dcache and
8 to 10 CP from Scache, the load bandwidths are 2 loads/CP from Dcache or Scache, or
1 store/CP.

Each PE is equipped with a local memory (DRAM) of 128, 256 or 512 Mbyte. To max-
imize local memory bandwidth, 6 data stream buffers are available. They do a prefetch
from DRAM to cache for vector-like data references leading to a better performance. Ad-
ditionally, a set of 512 off-chip memory mapped external (E) registers can be used, which
directly load/store into/from the cache registers from/to the global memory.

For QCD simulations it is sometimes sufficient to perform the calculations in half-
precision. On the T3E operations can only be performed in 64-bit precision due to the 64-
bit arithmetic of the processor. Nevertheless, it is possible to use half-precision variables
(32 bit). Before being processed, they are extented to 64 bit, then processed and finally
reduced again to 32 bit. So it is not possible on the T3E to increase the number of
operations per clock period but one can profit from a better cache usage.

The CRAY T3E-600 at the Research Centre Jülich is equipped with 512 application
PE, which together offer a peak performance of 300 Gflops. The memory is 128 Mbyte
on each PE. Unfortunately, the application PE are from a series of EV5 chips which
show a hardware design problem in the memory control unit. Using the stream buffers
on these PE may lead to stability problems of the system. Therefore, stream buffers are
deactivated and may in general only be used for tests when the system is in maintanance
mode.

5. Implementing the inversion algorithm on the CRAY T3E

Our strategy for computing the quark propagators is as follows. First, a four-dimensio-
nal processor grid with nproc processors is defined, where px · py · pz · pt = nproc. Then, the
system is partitioned by dividing the four-dimensional lattice of size Nx ·Ny ·Nz ·Nt = V
into local sublattices of size nx · ny · nz · nt = Vloc with ni = Ni/pi.

The speed of the algorithm and the convergence depends on the layout and the ordering
of the fields on each processor. The best usage of the cache is given by running the
space-time index last. Two efficient orderings of the lattice sites are the even-odd or
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checkerboard ordering and the local lexicographic ordering. The first one is easy to
vectorize or parallelize, because the even (odd) points are independent from each other
(Fig. 1), while the second one is the most efficient way with regard to the number of
iterations [11]. In the forward (backward) solves the neighbours before (after) the current
site have to be considered. Thus one needs to communicate the results of the points on
the boundary as soon as they are computed. In order to reduce the overhead for the
communication we introduce a further blocking within local lexicographic (BLL) ordering
on each processor (Fig. 1), which accelerates the Mflop rate by a factor of 3.

In Fig. 1 the ordering of the sites corresponds to the alphabetic ordering a − q. The
arrows illustrate the points, which have to be taken into account for the update of one of
the sites in a two-dimensional analogue.
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Figure 1. Blocked local lexicographic (left) and even-odd ordering (right).

Before the inversion algorithm can start, the input of the gauge fields (U) and sometimes
the starting vectors (φ, ψo) has to be done. These data are given in 32-bit precision
because they were generated on the APE100 in 32-bit precision. The I/O is implemented
in parallel by letting the pt processors read nt files and send the data to those processors
belonging to the same time slices. Doing this, an I/O-bandwidth of up to 75 Mbytes/s can
be reached. When the data are read in and distributed, they finally have to be converted
to 64 bit.

One iteration step for solving the linear equationMψ = φ involves four basic operations:

1. communicate the boundary values,

2. build the vector inner products,

3. perform AXPY vector operations,

4. compute matrix-vector multiplications.

For the communication we use the highly optimized Cray-specific shared memory rou-
tines (shmemput and shmemget) which transfer the data directly between the local and
remote memories. For standard message passing routines like MPI about 10% of the total



6

computer time is spent on communication. With shared memory routines, communication
is a factor of 2 to 3 faster.

In case of the inner products and AXPY operations, Fortran 90, BLAS, and assembler
routines can be compared. For our application nearly no performance difference between
the different routines can be seen. However, on the Fortran level it is worthwhile taking
care that all cache entries are used as often as possible and to pad the arrays to avoid
cache conflicts. E.g. the operation z = z + β ∗ y followed by z = x + α ∗ z runs with
75 Mflops while the performance increases to 140 Mflops if we do both operations in one
step z = x+ α ∗ (z + β ∗ y) as it is needed in the BiCGStab algorithm.

Around 80% of the computer time is spent for the forward/backward solve or, in case
of even-odd ordering, for the matrix-vector multiplication, which from the programming
point of view is essentially the same. Therefore, we spent most of our effort in optimizing
these operations. Looking at the fermion matrix in more detail, the number of SU(3)-
multiplications can be reduced by a factor of 2 by noting that the 4× 4 matrix mα,α′ can
be split into the matrices p of size 4× 2 and q of size 2× 4. This is known as the Wilson
trick. Matrix M of (2) takes the form

M c,c′
α,α′(x, y) = δc,c′

α,α′δx,y − κ
4∑

µ=1

2∑

α′′=1

(
q−µ,α,α′′U

+c,c′
µ (x− µ)p−µ,α′′,α′δ(x−µ),y

+ qµ,α,α′′U
c,c′
µ (x)pµ,α′′,α′δ(x+µ),y

)
. (6)

For a further discussion of the implementation, let us consider the last term:

4∑

α′=1

2∑

α′′=1

3∑

c′=1

qµ,α,α′′Uµ(x)
c,c′pµ,α′′α′χ(x+ µ)c′

α′ = y(x)c
α . (7)

A standard way to compute (7) in four steps is:

1. • Communicate the boundary of χ (done globally for the whole vector χ).

• Compute pµ,α′′α′χ(x+ µ)c′
α′ = χ(x)′c′α′′ for a specific site x.

• Compute Uµ(x)c,c′χ(x)′c′α′′ = χ(x)′′cα′′ for a specific site x.

• Compute qµ,α,α′′χ(x)′′cα′′ = y(x) for a specific site x.

Using even-odd ordering there is another possible way to proceed in five steps:

2. • Compute pµ,α′′α′χ(x)c′
α′ = ω(x)c′

α′′ for all sites x.

• Communicate ω(x) to its neighbour x+ µ.

• Gather result in χ(x)′.

• Compute Uµ(x)c,c′χ(x)′c′α′′ = χ(x)′′cα′′ for all sites x.

• Compute qµ,α,α′′χ(x)′′cα′′ = y(x) for all sites x.

At first glance one would expect case 1 to be better suited in exploiting cache reuse, while
case 2 should be able to exploit the stream buffers more effectively. This is confirmed by
the single processor results listed in Tab. 1, where one clearly sees that the multiplication
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Table 1
Single-processor performance in Mflops. Single-precision results are given in parentheses.

case 1 case 2
pµ,α′′α′χ

c′

α′
12 (20) 13 (27)

U
c,c′

µ χ′c′
α′′

70 (73) 94 (124)
qµ,α,α′′χ′′

c

α′′
26 (30) 20 (45)

overall 48 (63) 39 (61)

Uχ′ has a higher Mflop rate in case 2, while for the final multiplication case 1 has the
higher rate since it has better cache usage.

Also, as expected, nearly all floating point operations are generated by the complex
3 × 3 matrix-vector multiplication with Uµ(x). On the other hand, the multiplications
with p and q are mainly load and store, because m has a simple form, e.g. for µ=2

p2 =

(
1 0 0 −1
0 1 1 0

)

As a result, these multiplications are hard to optimize since the performance is determined
by the bandwidth between memory and cache.

In Fortran, case 1 is clearly the better way to proceed. To conclude this section we quote
the overall inversion performances for the BiCGStab algorithm with SSOR precondition-
ing: BLL ordering: 59 (75) Mflops; even-odd ordering: 62 (80) Mflops. Single-precision
results are given in parentheses.

6. Single-processor optimization

Coding kernel routines in assembler can improve the performance considerably. There-
fore we rewrote in a first step the multiplication with U in assembler. The performance
results are listed in Tab. 2. A significant improvement can be observed in both cases,
indicating that the hand-written assembler code has a much better register use.

Table 2
Single-processor performance of the assembler codes in Mflops.

case 1 case 2
U

c,c′

µ χ′c′
α′′

150 (158) 168 (240)
overall 67 (81) 45 (72)

Further improvements are expected by extending the assembler code to more steps
needed to calculate (7). In case 2 it is possible to make efficient use of the stream
buffers. One possibility is to combine the last three steps in one assembler program. In
this case, we find a decrease in the Mflops rate for the assembler code from 168 to 125
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Mflops. However, the assembler code now contains the gather instruction of the nearest
neighbour sites as well as the multiplication with the matrix q, which have both very low
Mflop rates. Combining these steps with the matrix-vector multiplication one can make
more effective use of data already in the cache and eliminate some of the intermediate
steps (e.g. explicitly calculating χ′′). The result is an increase in case 2 from 45 (72) to
70 (118) Mflops in the overall performance.

Another possiblity is to include all the steps in a single assembler routine except the
communication, which is done globally as in case 1. In this case the single-processor
performance of the assembler routine decreases (overall performance increases) to a value
of 85 (140) Mflops. The reason for this are the extra load and store instructions that
have been added to the assembler routine. To understand why this happens one has to
consider the architecture of the EV5 RISC chip: even though 4 instructions are issued per
clock period, some instructions cannot perform simultaneously (e.g. loads and stores). In
addition, only one floating point multiply or add may be issued in the same clock period.
These factors make it very difficult to balance the requirements of the processor with the
practical nature of the problem, where the assembler code now becomes saturated with
load and store instructions, while the number of floating point operations only increases
marginally. On the other hand, it is an improvement in the overall performance of around
20%. Our current best performance values for the BiCGStab algorithms are

even-odd ordering: 87(115) Mflops
BLL ordering: 72 (86) Mflops

However, the number of iterations with BLL ordering is about the half compared to even-
odd ordering. Therefore, in real time, BLL ordering is still about 70% faster than even-
odd ordering. All performance numbers given above are with activated stream buffers.
Without streams, the performance for BLL ordering drops to 51 (72) Mflops.

7. Summary

We have presented a discussion of optimized codes for lattice QCD on the CRAY T3E.
To improve the state-of-the-art BiCGStab inversion algorithm, we implemented SSOR
preconditioning with blocked lexicographic ordering which can be used efficiently on par-
allel machines. Optimization efforts are concentrated on the matrix-vector multiplications
since most of the computational effort is contained therein. Programming Fortran kernel
routines or parts thereof in assembler improves the performance substantially.

We find that one of the main difficulties in optimizing codes on the CRAY T3E is the
efficient implementation of instruction scheduling with respect to the complex memory
system (set of on-chip caches, stream buffers, E-registers), as well as the quad-instruction
issue nature of the processor.
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Eicker, N., Glässner, U., Güsken, S., Hoeber, H., Lippert, Th., Ritzenhöfer, G., Schil-
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A Parallel SSOR Preconditioner for Lattice QCD, Comp. Phys. Comm. 98 (1996) 20.

12. Eicker, N., Frommer, A., Hoeber, H., Lippert, Th., Medecke, B., Schilling, K., Weufen,
G.: Parallel SSOR preconditioners for Improved Actions in Lattice Field Theory, this
conference.


