000155188 001__ 155188
000155188 005__ 20210129214032.0
000155188 0247_ $$2doi$$a10.1007/BFb0037145
000155188 0247_ $$2Handle$$a2128/11927
000155188 037__ $$aFZJ-2014-04369
000155188 1001_ $$0P:(DE-Juel1)132045$$aAttig, Norbert$$b0$$eCorresponding Author$$ufzj
000155188 1112_ $$aHigh Performance and Networking Europe 1998$$cAmsterdam$$d1998-04-21 - 1998-04-23$$gHPCN '98$$wThe Netherlands
000155188 245__ $$aRunning a code for lattice quantum chromodynamics efficiently on CRAY T3E systems
000155188 260__ $$aBerlin/Heidelberg$$bSpringer-Verlag$$c1998
000155188 29510 $$aHigh-Performance Computing and Networking
000155188 300__ $$a183-192
000155188 3367_ $$2ORCID$$aCONFERENCE_PAPER
000155188 3367_ $$033$$2EndNote$$aConference Paper
000155188 3367_ $$2BibTeX$$aINPROCEEDINGS
000155188 3367_ $$2DRIVER$$aconferenceObject
000155188 3367_ $$2DataCite$$aOutput Types/Conference Paper
000155188 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1408516529_5990
000155188 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000155188 4900_ $$aLecture Notes in Computer Science$$v1401
000155188 520__ $$aComputing physical quantities in lattice quantum chromodynamics means solving huge systems of linear equations (O(107) equations). Efficient parallel Krylov subspace solvers play a vital role in the solution of these systems. We present a detailed analysis of the performance of the stabilized biconjugate gradient algorithm with preconditioning on massively parallel CRAY T3E systems.
000155188 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000155188 588__ $$aDataset connected to CrossRef Book
000155188 7001_ $$0P:(DE-HGF)0$$aGüsken, S.$$b1
000155188 7001_ $$0P:(DE-HGF)0$$aLacock, P.$$b2
000155188 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b3$$ufzj
000155188 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b4
000155188 7001_ $$0P:(DE-HGF)0$$aUeberholz, P.$$b5
000155188 7001_ $$0P:(DE-HGF)0$$aViehoff, J.$$b6
000155188 773__ $$a10.1007/BFb0037145
000155188 8564_ $$uhttps://juser.fz-juelich.de/record/155188/files/ib-9823.pdf$$yOpenAccess
000155188 8564_ $$uhttps://juser.fz-juelich.de/record/155188/files/ib-9823.gif?subformat=icon$$xicon$$yOpenAccess
000155188 8564_ $$uhttps://juser.fz-juelich.de/record/155188/files/ib-9823.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000155188 8564_ $$uhttps://juser.fz-juelich.de/record/155188/files/ib-9823.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000155188 8564_ $$uhttps://juser.fz-juelich.de/record/155188/files/ib-9823.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000155188 909CO $$ooai:juser.fz-juelich.de:155188$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000155188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132045$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000155188 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155188 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155188 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000155188 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000155188 980__ $$acontrib
000155188 980__ $$aVDB
000155188 980__ $$aUNRESTRICTED
000155188 980__ $$acontb
000155188 980__ $$aI:(DE-Juel1)VDB62
000155188 980__ $$aI:(DE-Juel1)JSC-20090406
000155188 9801_ $$aFullTexts
000155188 981__ $$aI:(DE-Juel1)JSC-20090406