FORSCHUNGSZENTRUM JULICH GmbH

Zentralinstitut fir Angewandte Mathematik
D-52425 Jiilich, Tel. (02461) 61-6402

Interner Bericht

Running a Code
for Lattice Quantum Chromodynamics
Efficiently on CRAY T3E Systems

Norbert Attig, Stephan Giisk&rPierre Lacock,
Thomas Lippeft Klaus Schilling?,
Peer Ueberhotz Jochen Viehoff

FZJ-ZAM-IB-9823

Mai 1998
(letzte Anderung: 11.05.98)

Preprint: Proceedings of High Performance Computing artavdi&ing Europe 1998 (HPCN),
Amsterdam, Niederlande, 21. - 23. April 1998, pp. 183-192

() Hochstleistungsrechenzentrum (HLRZ), c/o Forschungszenlilich GmbH,
D-52425 Jilich, Germany

(®) Fachbereich Physik, Universitat Wuppertal,
D-42097 Wuppertal, Germany

Running a Code for Lattice Quantum Chromodynamics
Efficiently on CRAY T3E Systems

N. Attig*, S. Guskep, P. LacocK, Th. Lipper#, K. Schilling?3,
P. Ueberhol2, and J. Viehoft

1 Zentralinstitut fir Angewandte Mathematik (ZAM), Forsetyszentrum Julich GmbH,
D-52425 Julich, Germany
2 Hochstleistungsrechenzentrum (HLRZ), c/o Forschungsam Jillich GmbH,
D-52425 Julich, Germany
3 Fachbereich Physik, Universitat Wuppertal, D-42097 \Wartgl, Germany

Abstract. Computing physical quantities in lattice quantum chrommyics
means solving huge systems of linear equatiaf$1(”) equations). Efficient
parallel Krylov subspace solvers play a vital role in theuioh of these systems.
We present a detailed analysis of the performance of théigebbiconjugate

gradient algorithm with preconditioning on massively plateCRAY T3E sys-
tems.

1 Lattice Gauge Theory computations

The numerical investigation of quantum chromodynamicsah a four-dimensional
space-time grid is one of the grand challenges in high-perdace scientific computing
[1,2]. QCD is considered to be the fundamental theory ohgflpinteracting particles.
After 20 years of research, the strong coupling regime of Qg]till has not been
solved in a non-perturbative analytical approach, andbyisow widely believed that
the numerical treatment of the theory on the lattice using fast parallel supercom-
puters is the only viable scheme to extract quantitativesfplay results [4]. The results
from lattice gauge theory (LGT) simulations are urgentlgaed as theoretical input for
current and future accelerator experiments that attemgibserve new physics beyond
the Sandard Model of elementary particle physics [5].

LGT computes functional integrals using Monte Carlo methkdown from sta-
tistical physics [6]. A representative ensemble of fieldfigurations is generated by
a Markov process (simulation phase). These configuratimswbsequently analysed
by composing (and averaging over) hadronic correlators fjoark Green’s functions
(analysis phase). The correlators then serve to extracigddyobservables like hadron
masses and decay constants.

2 The numerical problem and computational effort

The enormous amount of floating-point operations which hauge calculated in the
stochastic simulation in order to achieve statisticallyngficant physical results has

* Talk presented by N. Attig

led to a concentration of activities in this field of researSkveral collaborations in
Japan (CP-PACS), the U.S. (MILC), United Kingdom (UKQCD)ddtaly (APE) are
investigating QCD systematically either on special-psgor commercial high-end
parallel supercomputer hardware performing with sevasatineds of Gflops.

The large-scale projects SESANI] and TyL? [8], a common effort of German
and Italian high-energy physicists to study full QCD withotfavours of dynamical
Wilson fermions, take place on APE100/Quadrics systemseimtfzen and Rome and
on CRAY T3E systems installed at the Research Centre Ji@]cn the following, the
physical model of this application which is common many Q@i2estigations and its
numerical implementation are discussed in some detail.

In the simulation phase a representative ensemble of gaeldectinfigurations on
a space-time lattice is generated using a Hybrid Monte Caldorithm (HMC) on
the parallel supercomputer APE100/Quadrics. The SESANeprdas simulated on
a163 x 32 lattice while the TyL production is still ongoing on 243 x 40 lattice. The
APE100 systems are equipped with 256 and 512 nodes resggcEBach node has a
theoretical peak performance of 50 Mflops, the HMC algoritteaches a sustained
performance of 50% on a 512-node machine. The total compimterused so far adds
up to 250 Teraflop hours.

The analysis of these gauge field configurations is perforamethe CRAY T3E
systems at the Research Centre Julich. The most time-gongwart of this analysis
phase is the frequent computation of the QCD Green'’s funstés solutions of huge
sparse systems of linear equations [10] on each gauge fiefajacation

Mg (@, 2y (ar) = ¢4 (x) | 1)

where¢ is some input vector)/ is the Dirac fermion matrix ang the required so-
lution. The solution (quark propagator) is then used to stigate the properties of
hadrons by constructing the appropriate hadronic cooedaEor the choice of lattice
fermions considered here, namely the so-called Wilson ifers) (1) has the explicit
form

4
Y(z)g — K < Z U—p(2)*m— 0,00t (2 —)5,
")
+ Z Uu(x)cﬂc/mu,a,alw(x + U)Z/) = ¢(x)g,
p=1

whereU,,(z)>¢ is an SU(3) matrix for the gauge field (gluon), computed indimeu-
lation phasey (x)¢, is a4 x 3 complex matrix for the particle (quark) amdis a4 x 4
matrix containing the spin components. The inderuns over all space-time lattice
points (4 dimensions). In particulaY/ is a non-hermitean complex sparse matrix with
the following structure:

— 1in the diagonal.

! Sea QuarkEffects onSpectrumand M atrix Elements
2 Towards thechiral Limit

— 8 non-diagonal 2 x 12 matrices (nearest neighbours in space-time).
— Each12 x 12 matrix is a tensor product of iU (3) matrix U times the Dirael x 4
matrix m.

In order to solve this system of linear equations we applyl&{rngubspace solvets
complemented by preconditioning techniques.

3 Inversion algorithms

The class of Krylov subspace iterative methods for solvitigg characterised by the
generic form

1. choose an initial guess’ and set® = ¢ — My°
2. compute iterativelyy™ of the formy™ = ¢% + g, 1) (M)7°.

Hereq(,—1)(M) is a polynomial of degree: m. Examples are the conjugate gradi-
ent or the minimal residual algorithms. At present, theestdtthe-art method for the
fermion matrix is the stabilised biconjugate gradient (B&ab) algorithm [11].

Further improvement of the inversion algorithm can be atadiby using precon-
ditioning techniques, which should reduce the number ohitens and the comput-
ing time necessary to achieve a given accuracy. To predondit) we take two non-
singular matrice¥; andV, which act as left and right preconditioners respectivedy, i
we replace (1) by

Myp=¢ — V7'MV = ¢ 3)

The matrixV’ = V; V4 is called the preconditioner. The efficiency of the prectiading
method depends on how good an approximatias of M, as well as the computational
overhead entailed in the method: solving systems WjtandV; should be cheap.

Currently, the most efficient way is to use symmetric sudeessver-relaxation
(SSOR) preconditioning (for details see [12,13]):

Vi=I-1; Vo=1I-U (4)

with M = I — L — U, I the diagonal part]. the strictly lower triangular part arid the
strictly upper triangular part. The convergence rate dédbends on the ordering of the
sites in the lattice.

In case of even-odd ordering, where all even sites are ldibeifore the odd ones on
each processor like a checkerboard (see Fig. 1), the pritoredi matrixV,” ' MV, !
can be computed explicitly. For larger sub-systems we usallppSSOR precondi-
tioning. In particular, the sub-blocks have the same sizd@partitions of the lattice
assigned to a processor. Thus, in parallel SSOR, the péswilis adapted to the parallel
system. The use of the Eisenstat trick is essential:

ViIMV = (I - U (I L) I - (I - U)Y) (5)

3 The coefficients of the regular sparse matrix are relatedstochastic background gauge field,
hence multigrid methods are not efficient here!

In this way the SSOR preconditioning is about as expensiwé @sbecausél — L)x =
y (forward solve) and! — U)z = y (backward solve) are easy to solve.

The largest vector computed in the SESAM angLTprojects is of a size of 12
Mwords. This number is given by the volume factor (¢ x 40), the four Dirac
components, three colour components, and a factor 2 duentple® elements. As a
consequence, we are faced in the analysis phase, wheretabhdbbusand configura-
tions have to be used for calculating the propagators, wittgairement of about 10
Teraflop hours computing time on the order of 1 Terabyte ad.dats therefore evident
that optimization of the QCD analysis codes on parallel sugraputers is mandatory
in order to carry out ambitious computations of this kindaafintly.

4 CRAY T3E architecture

The CRAY T3E, which is the second generation of Cray ReselteR systems, is
the ideal machine for this kind of application. It is a fullyadable MIMD system with
distributed memory and global address space. The applicptbcessing elements (ap-
plication PE) are connected by a network which has the tapadda three-dimensional
torus. The system is self-hosting and scalable from 8 to HES For every 16 appli-
cation PE an operating system node (OS PE) is required.

Each processing node is equipped with a DEC Alpha EV5 miowgssor. In the
CRAY T3E-600 the processor clock rate is 300 MHz, while in T8£-900 the clock
rate is 450 MHz. The instruction rate is up to 4 per clock cy2l@oating-point, 2 in-
teger/logic) which results in a peak performance of 600 Mfléqg the T3E-600 and
900 Mflops for the T3E-900, respectively. The microprocesses IEEE 64-bit arith-
metic. Furthermore, each microprocessor has 3 on-chipesaohe 8 KByte data cache
(Dcache), segmented into 256 cache lines with 4 64-bit weeath, one 8 KByte in-
struction cache (Icache) with the same segmentation anfi®k8yte secondary cache
(Scache), separated in 3 associative sets of 512 cachebicbsserving either Dcache
and Icache. The load latencies are 2 clock periods (CP) freatbBe and 8 to 10 CP
from Scache, the load bandwidths are 2 loads/CP from DcacBeazhe, or 1 store/CP.

Table 1. Characteristics of the CRAY T3E systems installed at theeReh Centre Julich.

| [T3E-600 [T3E-900 |

Number of application PE 512 256
Processor clock 300 MHz 450 MHz
Mflops (peak per PE) 600 900

Main memory (per PE) 128 MByte |128 MByte
Primary data cache (per PE) 8 KB 8 KB
Secondary cache (per PE) 96 KB 96 KB
Memory bandwidth 1200 MBYyte/$1200 MByte/s

Each PE is equipped with a local memory (DRAM) of 128, 256 o2 BAByte.
To maximize local memory bandwidth, 6 data stream buffeesaamilable. They do a
prefetch from DRAM to cache for vector-like data refereneasling to a better perfor-
mance. Additionally, a set of 512 off-chip memory mappe@mal (E) registers can be
used, which directly load/store into/from the cache regssfrom/to the global memory.

For QCD simulations it is sometimes sufficient to performd¢a&ulations in half-
precision. On the T3E operations can only be performed ibi6frecision due to
the 64-bit arithmetic of the processor. Nevertheless, joissible to use half-precision
variables (32 bit). Before being processed, they are extietat 64 bit, then processed
and finally reduced again to 32 bit. So it is not possible onTBE to increase the
number of operations per clock period but one can profit frdretter cache usage.

The calculations are performed at the Research CentrehJaiti two CRAY T3E
systems: on a 512-node T3E-600 and and on a 256-node T3H#&6.1 summarizes
the main characteristics of these machines installedliahu

5 Implementing the inversion algorithm on the CRAY T3E

The strategy for computing the quark propagators is asvisli&irst, a four-dimension-
al processor grid with,,... processors is defined, whexg- py - p. - pr = Nproc. Then,
the system is partitioned by dividing the four-dimensidattice of sizeN, - N, - IV, -
N, =V into local sublattices of size, - n, - n, - ny = Vi With n; = N, /p;.

o @|lo 0'o ©|0 0'0 ©|0 ® ® 0006 00066 eloo
@ 0|0 Ol0 0|0 ©10 0|0 6 ®OO000e0O0O6leand
®© ®|® ©0 0|0 ® 0 0|0 O OOO00000O0O0ea0
o®,g§-®©,o®@@ ® 0o 00 Q@leoo oo
®@@I © Q 0000 @@@@@@@@
O Oe©OOQIed ® Ol O [CHO, 00 ONONOIICHONONONCNO)
© olo o'oroto 0'o 0|lo © © 000 o0 6|00
@ ®|0 ©le 0|0 ®'e 6|0 ® ® 06006 bleoooleod
O @0 PO @0 @10 O[O0 ® ® 00006 0|00 Oeloo
® 0|0 0,0 0|0 0,0 O|® © ®OO000Re0O0O6leand

Fig. 1. Blocked local lexicographic (left) and even-odd orderiright)

The speed of the algorithm and the convergence depends daythet and the
ordering of the fields on each processor. The cache is usé¢dtypesnning the space-
time lattice index last. Two efficient orderings of the ledtisites are the even-odd or
checkerboard ordering and the local lexicographic ordgrirhe first one is easy to
vectorize or parallelize, because the even (odd) pointsdependent from each other
(Fig. 1), while the second one is the most efficient way withare to the number
of iterations [12]. In the forward (backward) solves theghdiours before (after) the
current site have to be considered, thus one needs to coroaterrthe results of the
points on the boundary as soon as they are computed. In orgegtuce the overhead for
the communication we introduce a further blocking withicdblexicographic (BLL)
ordering on each processor (Fig. 1), which accelerates ftapvate by a factor of 3.

Cutting the local sub-lattice once in order to decouple tieall data elements is
sufficient to achieve efficient pipelined communicationneke, the blocking is called
one-dimensional. We remark that it would not be useful tdgrer two-dimensional

blocking (leading to four distinct local partitions) as #féiciency of local lexicographic
SSOR depends on the local lattice size and decreases fdesfoahl lattices.

In Fig. 1 the ordering of the sites corresponds to the alpii@bederinga — ¢. The
arrows illustrate the points, which have to be taken intamaot for the update of one
of the sites in a two-dimensional analogue.

The program starts with an input phase. The gauge fidltig,(159 MByte on
the 242 x 40 lattice) and sometimes the starting vectass(,, 637 MByte each on
the 243 x 40 lattice) are read in (in half-precision, because they weneegated on
the APE100 in 32-bit precision). The I/O is implemented imgbal by letting thep,
processors read, files and send the data to those processors belonging to e sa
time-slices. Making use of user-triggered disk-stripingdistributing the files over
different partitions, a performance of up to 120 MBytes/a ba reached. When the
data are read in and distributed, they finally have to be ateddo 64 bit. Now the
inversion algorithm can start.

One iteration step for solving the linear equatibfyy = ¢ involves four basic
operations:

1. communication of the boundary values,
2. vector inner products,

3. AXPY vector operationg =y + « * x),
4. matrix-vector multiplications.

For the communication, the Cray-specific shared memoryrresitshmemput and
shmemget) are used which transfer the data directly between the bwhlemote mem-
ories. For standard message-passing routines like MPtd986 of the total computer
time is spent on communication. With shared memory roufinesxmunication is a
factor of 2 to 3 faster for our code.

In case of the inner products and AXPY operations, FortraB8@AS, and assem-
bler routines can be compared. We found that for our apicahere is nearly no
difference between the different routines, but on the Bartevel, it is worthwhile tak-
ing care that all cache entries are used as often as possihlpaalding the arrays to
avoid cache conflicts. E.g. the operatipa- « + 3 * y followed by z = = + « * y runs
with 86 Mflops (on the T3E-900) while the performance goesaupas Mflops if both
operations are done inone step= + a * (z + * y).

Around 80% of the computer time is spent for the forward/lveankl solve or, in
case of even-odd ordering, for the matrix-vector multigiion, which from the pro-
gramming point of view is essentially the same. Therefoeespent most of our effort
on optimizing this operation. Looking at the fermion mairixmore detail, the number
of SU(3)-multiplications can be reduced by a factor of 2 by notind tha4 x 4 matrix
ma,q Can be split into the matricgsof size4 x 2 andq of size2 x 4. This is known
as the Wilson trick. The matrix/ of (2) takes the form

4 2
525,:/5x,x/ — K Z Z <q,u.,a,a//U:ch"Cl(IE - M)p*u,a//,alis(g;—u),g;/
p=1an=1 (6)

+ Qu,a,a//Uﬁ’m(f)p#,a//,a/(s(x-yu),w/> = Mi’,g/(iﬂ,ﬂ) .

For further discussion of the parallel implementationpietonsider the last term

4 2 3
DD GwaanUS T @b anarnx(@ + 1), = y(x)5, - (7
al=1 al=1cr=1

A standard way to compute (7) in four steps is:

1. - Communicate the boundary gf(done globally for the whole vectoy).
— Computep,, anarx(z +)8, = x ()1, for a specific siter.
— ComputelU,, (z)*x(z)¢,, = x(z)1s,, for a specific siter.

— Computeg,, o.anx ()5, = y(x) for a specific siter.
Using even-odd ordering there is another possible way togaa in five steps:

2. — Computep, anarx(x)s, = w(z)g, for all sitesz.
— Communicatev(x) to its neighbout: + p.
— Gather result ing(z)/.
— ComputelU,, (z)“x(z)/, = x(z)1s,, for all sitesz.
— Computeg,, o anx ()5, = y(z) for all sitesz.

At first glance one would expect case 1 to be better suited pto@xcache reuse,
while case 2 should be able to exploit the stream buffers reffeetively. This is con-
firmed by the single-processor results listed in Tab. 2, wloere clearly sees that the
multiplicationU x/ has a higher Mflop rate in case 2, while for the final multipiica
case 1 has the higher rate since it has better cache usagettisoperformance com-
parison it can be concluded that at least on a Fortran pragmagilevel, case 1 is the
better choice.

Table 2. Single-processor performance in Mflops. Half-precisiautes are given in parentheses.

T3E-600 T3E-900
casel | case?2 casel | case?2
Pusararxs, 12 (20) [13(27) |14 (25) |14 (36)
U, 70 (73) |94 (124) |96 (100) |138 (169)
Gioan X, 26 (30) |20 (45) |24 (40) |21 (59)

complete computation of (748 (63) 39 (61) 63 (90) 48 (80)
overall performance of BiCGstab with SSOR
BLL ordering 59 (75) 67 (130)
even-odd ordering 62 (80) 85 (106)

Also, as expected, nearly all floating-point operationgymerated by the complex
3 x 3 matrix-vector multiplication witi/,, (). On the other hand, the multiplications
with p andq are mainly load and store, becauséas a simple form, e.g. far=2:

_(100-1
P2=1{p11 0

These multiplications are hard to optimize because theopednce is limited by the
bandwidth between memory and cache.

Comparing the results on the T3E-600 with the ones obtaimethe T3E-900
one clearly sees that the application speeds up very wellhfse parts which are
not memory-bounded, e.g/; ' x/y,. If mainly load/store operations are performed
(P, anarXs, OF qu.a,anX!s,,), the code cannot gain from the increased processor speed
due to the bottleneck of memory access time.

6 Single-processor optimization

The performance obtained up to now implies automatic (&ar0 compiler options
for intrinsic vectorisation and unrolling) and manual opitiations (index permutations,
loop interchange to improve cache usage, common block pgdadiavoid Scache con-
flicts and keeping the number of active data streams to 6 smbgrever possible). To
improve the performance further, we decided to use assemitalgramming for the ker-
nel routines. As a first step, the multiplication withwas rewritten in assembler. The
performance results are listed in Tab. 3. A significant improent can be observed in
cases 1 and 2, indicating that the hand-written assemhiéneomakes much better use
of the registers.

Table 3. Single-processor performance of assembler code in MflopB:ptlecision results are
given in parentheses.

T3E-600 T3E-900
casel | case?2 casel | case?2
U, 150 (158) [168 (240) [185 (207) |221 (320)
complete computation of (757 (81) 45 (72) 89 (116) |52 (98)

Further improvements are expected by extending the assemtigramming to
more steps needed for the calculation of (7), especiallgdse 2 where the inner loop
over the siteg: implies a very efficient use of the streams buffers. It mighplssible
that a hand-written assembler program can benefit much mamethis effect than the
corresponding Fortran routine. Our attempt is to speed 8p 2aas much as possible
in order to finally obtain a BiCGstab algorithm with even-axttering which converges
faster in real time than the corresponding one with BLL oirttgrFor case 1 we do not
expect any further major acceleration because only sigg site can be calculated.

One possibility is to combine the last three steps of casedh@assembler pro-
gram. In this case, we measured a performance of 108 Mflop&-60®), and 120
Mflops (T3E-900) respectively. However, the assembler comle contains the gather
instruction of the nearest neighbour sites as well as theiptiahtion with the matrix
q, which have both very low Mflop rates. Combining these stejtis the matrix-vector
multiplication leads to more effective use of cache redidete and eliminates some of
the intermediate steps (e.g. explicitly calculatipg). This increases the performance
from 52 (98) Mflops (T3E-900) to 68 (120) Mflops in the completenputation of (7).

Furthermore, it is possible to combine all steps of case 2nie assembler rou-
tine, except the communication, which is done globally asdee 1. In this case the
single-processor performance of the assembler routireees85 (140) Mflops on the
T3E-600 and 92 (190) Mflops on the T3E-900. This disapoinp@gormance is caused

by the extra load and store instructions that have been addbé assembler routine.
To understand why this happens one has to consider theextthi¢ of the EV5 RISC

chip: even though four instructions are performed per clpekod, some instructions
cannot be issued simultaneously in the same clock perigdi¢ads and stores). In ad-
dition, only one floating-point multiply or add may be issuedhe same clock period.

These factors make it very difficult to balance the requinetmef the processor with

the practical nature of the problem, when the assembler bedemes saturated with
load and store instructions, while the number of floatingrpoperations only increases
marginally. On the other hand, a performance improvemeataind 20% for the com-

plete computation of (7) can be realized. Our currently pestormance values for the
BiCGstab algorithms are summarized in Tab. 4.

Table 4. Improved overall performance (Mflops per processor) of tie@stab algorithm with
SSOR preconditioning. Half-precision results are giveparentheses.

T3E-600 T3E-900
casel | case?2 casel | case?2
BLL ordering 76 (95) 88 (127)
even-odd ordering|65 (80) 87 (115) |86 (110) [103 (148)

These data clearly show that the BiCGstab algorithm witmew#d ordering in the
implementation of case 2 is only slightly faster than the with BLL ordering in the
implementation of case 1. As mentioned in Chap. 5, the numfdeerations with BLL
ordering is roughly one half compared to even-odd orderitgerefore, in real time
BLL ordering is still about 80% faster than even-odd ordgrin

7 Summary

We have presented a discussion of optimized codes forda@tcD on CRAY T3E sys-

tems. To improve the state-of-the-art BiCGstab inversigor@hm, we implemented
SSOR blocked lexicographic preconditioning which can lieiefitly implemented on

parallel machines. Our optimization efforts were concaett on the matrix-vector
multiplications since most of the processing time is spenthiese routines. It was
demonstrated that assembler programming of kernel ratinproves the overall per-
formance substantially. In assembler programming, weddhat one of the main dif-
ficulties in optimizing codes on the CRAY T3E processing roidahe efficient imple-

mention of instruction scheduling with respect to the caarphemory system (on-chip
caches, stream buffers, E-registers), and the processgability to perform four in-

structions per clock period.

The final performance of 20% of the peak speed on the T3E-6MChaif-precision
data is consistent with the well known limitations of diretpped cache architectures.
Also on other popular machines used by the QCD communitytlieeAPE100/Qua-
drics or CP-PACS, assembler programming and register gqattion is mandatory
in order to achieve relative performances between 50 and @0&teir peak speed.
However, these systems profit from hardware optimizatietessant for efficient QCD
matrix-vector multiplications.

Acknowledgements

The authors gratefully acknowledge the computer time gty the HLRZ on the
CRAY T3E systems of the Research Centre Julich. They waladtb thank E. An-
derson of Silicon Graphics/Cray Research for his adviceedfaits with respect to
the assembler programming and R. Vogelsang from Silicopkdca GmbH / Cray Re-
search for his continuous support.

References

wn

o u

10.

11.

12.

13.

. Wilson, K.G.: Grand Challenges to computational scieRo&ure Generation Computer Sys-

tems5 (1989) 171.

Aoki, S.: The QCD Teraflops Project, Int. J. Mod. Ph$2.(1991) 829.

Zerwas, P.M., Kastrup, H.A. (edsQCD 20 years later (World Scientific, Singapore, 1992).
DeGrand, T.: Lattice Gauge Theory for QCD, COLO-HEP-3¥é¢ph/9610391), October
1996.

Particle data group, Phys. R®54 (1996) 1.

Creutz, M. inQuarks, Gluons and Lattices (Cambridge University Press, Cambridge, 1983).
Glassner, U., Gusken, S., Hoeber, H., Lippert, Th.,,2u¢ Ritzenhofer, G., Schilling, K.,
Siegert, G.: QCD with dynamical Wilson fermions - first residtom SESAM, Nucl. Phys.
B (Proc. Suppl. A7 (1996) 386;

Glassner, U., Gusken, S., Hoeber, H., Lippert, Th., Rit#der, G., Schilling, K., Siegart,
G., Wachter, A.: First Evidence a¥¢-Dependence in the QCD Interquark Potential, Phys.
Lett. B383(1996) 98;

Eicker, N., Glassner, U., Gusken, S., Hoeber, H., Lippent, Ritzenhofer, G., Schilling, K.,
Siegart, G., Spitz, A., Ueberholz, P., Viehoff, J.: Evaingisea quark contributions to flavour
singlet operators in lattice QCD, Phys. L&889(1996) 720.

Conti, L., Eicker, N., Giusti, L., Glassner, U., Guskéh, Hoeber, H., Lippert, Th., Mar-
tinelli, G., Rapuano, F., Ritzenhofer, G., Schilling, Biegert, G., Spitz, A., Viehoff, J.: Full
QCD with dynamical Wilson fermions on2at® x 40 lattice - A feasibility study, Nucl. Phys.
B (Proc. Suppl.p3(1997) 222;

Lippert, Th., Bali, G., Eicker, N., Giusti, L., Glassner,, Gisken, S., Hoeber, H., Lacock, P.,
Martinelli, G., Rapuano, F., Ritzenhdfer, G., Schillitg, Siegert, G., Spitz, A., Ueberholz,
P., Viehoff, J.: SESAM and YL Results for Wilson Action: A Status Report, Nucl. Phis.
(Proc. Suppl.p0A (1998) 311.

Attig, N.: QCD on Parallel Computers at the HLRZ Supercatig Center, Proceedings of
Physics Computing 96 (PC’96), Krakow, Poland, (1996) 536.

Lippert, Th., Schilling, K. and Petkov, N.: Quark Propag on the Connection Machine,
Parallel Computind 8 (1992) 1291.

Frommer, A., Hannemann, V., Lippert, Th., Nockel, Bchiling, K.: Accelerating Wilson
Fermion Matrix Inversions by Means of the Stabilized Bicggte Gradient Algorithm, Int.
J. Mod. PhysC5 (1994) 1073.

Fischer, S., Frommer, A., Glassner, U., Lippert, Titzéhhofer, G., Schilling, K.: A Parallel
SSOR Preconditioner for Lattice QCD, Comp. Phys. Co®8{1996) 20.

Eicker, N., Frommer, A., Hoeber, H., Lippert, Th., MekiecB., Schilling, K., Weufen, G.:
Parallel SSOR preconditioners for Improved Actions in icattField Theory, to appear in
Proceedings of PARCO’97, Bonn, Germany, (1997).

