
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Running a Code
for Lattice Quantum Chromodynamics

Efficiently on CRAY T3E Systems

Norbert Attig, Stephan Güskenb, Pierre Lacocka,
Thomas Lippertb, Klaus Schillinga,b,

Peer Ueberholzb, Jochen Viehoffb

FZJ-ZAM-IB-9823

Mai 1998

(letzte Änderung: 11.05.98)

Preprint: Proceedings of High Performance Computing and Networking Europe 1998 (HPCN),
Amsterdam, Niederlande, 21. - 23. April 1998, pp. 183-192

(a) Höchstleistungsrechenzentrum (HLRZ), c/o Forschungszentrum Jülich GmbH,
D-52425 Jülich, Germany

(b) Fachbereich Physik, Universität Wuppertal,
D-42097 Wuppertal, Germany





Running a Code for Lattice Quantum Chromodynamics
Efficiently on CRAY T3E Systems

N. Attig1?, S. Güsken3, P. Lacock2, Th. Lippert3, K. Schilling2,3,
P. Ueberholz3, and J. Viehoff3

1 Zentralinstitut für Angewandte Mathematik (ZAM), Forschungszentrum Jülich GmbH,
D-52425 Jülich, Germany

2 Höchstleistungsrechenzentrum (HLRZ), c/o Forschungszentrum Jülich GmbH,
D-52425 Jülich, Germany

3 Fachbereich Physik, Universität Wuppertal, D-42097 Wuppertal, Germany

Abstract. Computing physical quantities in lattice quantum chromodynamics
means solving huge systems of linear equations (O(107) equations). Efficient
parallel Krylov subspace solvers play a vital role in the solution of these systems.
We present a detailed analysis of the performance of the stabilized biconjugate
gradient algorithm with preconditioning on massively parallel CRAY T3E sys-
tems.

1 Lattice Gauge Theory computations

The numerical investigation of quantum chromodynamics (QCD) on a four-dimensional
space-time grid is one of the grand challenges in high-performance scientific computing
[1, 2]. QCD is considered to be the fundamental theory of strongly interacting particles.
After 20 years of research, the strong coupling regime of QCD[3] still has not been
solved in a non-perturbative analytical approach, and it isby now widely believed that
the numerical treatment of the theory on the lattice using very fast parallel supercom-
puters is the only viable scheme to extract quantitative physical results [4]. The results
from lattice gauge theory (LGT) simulations are urgently needed as theoretical input for
current and future accelerator experiments that attempt toobserve new physics beyond
theStandard Model of elementary particle physics [5].

LGT computes functional integrals using Monte Carlo methods known from sta-
tistical physics [6]. A representative ensemble of field configurations is generated by
a Markov process (simulation phase). These configurations are subsequently analysed
by composing (and averaging over) hadronic correlators from quark Green’s functions
(analysis phase). The correlators then serve to extract physical observables like hadron
masses and decay constants.

2 The numerical problem and computational effort

The enormous amount of floating-point operations which haveto be calculated in the
stochastic simulation in order to achieve statistically significant physical results has

? Talk presented by N. Attig



led to a concentration of activities in this field of research. Several collaborations in
Japan (CP-PACS), the U.S. (MILC), United Kingdom (UKQCD), and Italy (APE) are
investigating QCD systematically either on special-purpose or commercial high-end
parallel supercomputer hardware performing with several hundreds of Gflops.

The large-scale projects SESAM1 [7] and TχL2 [8], a common effort of German
and Italian high-energy physicists to study full QCD with two flavours of dynamical
Wilson fermions, take place on APE100/Quadrics systems in Zeuthen and Rome and
on CRAY T3E systems installed at the Research Centre Jülich[9]. In the following, the
physical model of this application which is common many QCD investigations and its
numerical implementation are discussed in some detail.

In the simulation phase a representative ensemble of gauge field configurations on
a space-time lattice is generated using a Hybrid Monte Carloalgorithm (HMC) on
the parallel supercomputer APE100/Quadrics. The SESAM project has simulated on
a 163 × 32 lattice while the TχL production is still ongoing on a243 × 40 lattice. The
APE100 systems are equipped with 256 and 512 nodes respectively. Each node has a
theoretical peak performance of 50 Mflops, the HMC algorithmreaches a sustained
performance of 50% on a 512-node machine. The total computertime used so far adds
up to 250 Teraflop hours.

The analysis of these gauge field configurations is performedon the CRAY T3E
systems at the Research Centre Jülich. The most time-consuming part of this analysis
phase is the frequent computation of the QCD Green’s functions as solutions of huge
sparse systems of linear equations [10] on each gauge field configuration

M c,c′
α,α′

(x, x′)ψc′
α′

(x′) = φc
α(x) , (1)

whereφ is some input vector,M is the Dirac fermion matrix andψ the required so-
lution. The solution (quark propagator) is then used to investigate the properties of
hadrons by constructing the appropriate hadronic correlators. For the choice of lattice
fermions considered here, namely the so-called Wilson fermions, (1) has the explicit
form

ψ(x)c
α − κ

(
4∑

µ=1

U−µ(x)c,c′m−µ,α,α′ψ(x − µ)c′
α′

+
4∑

µ=1

Uµ(x)c,c′mµ,α,α′ψ(x+ µ)c′
α′

)
= φ(x)c

α ,

(2)

whereUµ(x)c,c′ is an SU(3) matrix for the gauge field (gluon), computed in thesimu-
lation phase,ψ(x)c

α is a4 × 3 complex matrix for the particle (quark) andm is a4 × 4
matrix containing the spin components. The indexx runs over all space-time lattice
points (4 dimensions). In particular,M is a non-hermitean complex sparse matrix with
the following structure:

– 1 in the diagonal.

1 Sea QuarkEffects onSpectrumand Matrix Elements
2 Towards thechiral L imit



– 8 non-diagonal12 × 12 matrices (nearest neighbours in space-time).
– Each12×12 matrix is a tensor product of anSU(3) matrixU times the Dirac4×4

matrixm.

In order to solve this system of linear equations we apply Krylov subspace solvers3,
complemented by preconditioning techniques.

3 Inversion algorithms

The class of Krylov subspace iterative methods for solving (1) is characterised by the
generic form

1. choose an initial guessψ0 and setr0 = φ−Mψ0 ,
2. compute iterativelyψm of the formψm = ψ0 + q(m−1)(M)r0.

Hereq(m−1)(M) is a polynomial of degree< m. Examples are the conjugate gradi-
ent or the minimal residual algorithms. At present, the state-of-the-art method for the
fermion matrix is the stabilised biconjugate gradient (BiCGstab) algorithm [11].

Further improvement of the inversion algorithm can be obtained by using precon-
ditioning techniques, which should reduce the number of iterations and the comput-
ing time necessary to achieve a given accuracy. To precondition (1) we take two non-
singular matricesV1 andV2 which act as left and right preconditioners respectively, i.e.
we replace (1) by

Mψ = φ −→ V −1
1 MV −1

2 ψ̃ = φ̃ (3)

The matrixV = V1V2 is called the preconditioner. The efficiency of the preconditioning
method depends on how good an approximationV is ofM , as well as the computational
overhead entailed in the method: solving systems withV1 andV2 should be cheap.

Currently, the most efficient way is to use symmetric successive over-relaxation
(SSOR) preconditioning (for details see [12, 13]):

V1 = I − L; V2 = I − U (4)

with M = I −L−U , I the diagonal part,L the strictly lower triangular part andU the
strictly upper triangular part. The convergence rate stilldepends on the ordering of the
sites in the lattice.

In case of even-odd ordering, where all even sites are labeled before the odd ones on
each processor like a checkerboard (see Fig. 1), the preconditioned matrixV −1

1 MV −1
2

can be computed explicitly. For larger sub-systems we use parallel SSOR precondi-
tioning. In particular, the sub-blocks have the same size asthe partitions of the lattice
assigned to a processor. Thus, in parallel SSOR, the parallelism is adapted to the parallel
system. The use of the Eisenstat trick is essential:

V −1
1 MV −1

2 = (I − U)−1 + (I − L)−1(I − (I − U)−1) (5)

3 The coefficients of the regular sparse matrix are related to astochastic background gauge field,
hence multigrid methods are not efficient here!



In this way the SSOR preconditioning is about as expensive asMψ, because(I−L)x =
y (forward solve) and(I − U)x = y (backward solve) are easy to solve.

The largest vector computed in the SESAM and TχL projects is of a size of 12
Mwords. This number is given by the volume factor (e.g.243 × 40), the four Dirac
components, three colour components, and a factor 2 due to complex elements. As a
consequence, we are faced in the analysis phase, where aboutten thousand configura-
tions have to be used for calculating the propagators, with arequirement of about 10
Teraflop hours computing time on the order of 1 Terabyte of data. It is therefore evident
that optimization of the QCD analysis codes on parallel supercomputers is mandatory
in order to carry out ambitious computations of this kind efficiently.

4 CRAY T3E architecture

The CRAY T3E, which is the second generation of Cray ResearchMPP systems, is
the ideal machine for this kind of application. It is a fully scalable MIMD system with
distributed memory and global address space. The application processing elements (ap-
plication PE) are connected by a network which has the topology of a three-dimensional
torus. The system is self-hosting and scalable from 8 to 2048PEs. For every 16 appli-
cation PE an operating system node (OS PE) is required.

Each processing node is equipped with a DEC Alpha EV5 microprocessor. In the
CRAY T3E-600 the processor clock rate is 300 MHz, while in theT3E-900 the clock
rate is 450 MHz. The instruction rate is up to 4 per clock cycle(2 floating-point, 2 in-
teger/logic) which results in a peak performance of 600 Mflops for the T3E-600 and
900 Mflops for the T3E-900, respectively. The microprocessor uses IEEE 64-bit arith-
metic. Furthermore, each microprocessor has 3 on-chip caches: one 8 KByte data cache
(Dcache), segmented into 256 cache lines with 4 64-bit wordseach, one 8 KByte in-
struction cache (Icache) with the same segmentation and one96 KByte secondary cache
(Scache), separated in 3 associative sets of 512 cache lineseach, serving either Dcache
and Icache. The load latencies are 2 clock periods (CP) from Dcache and 8 to 10 CP
from Scache, the load bandwidths are 2 loads/CP from Dcache or Scache, or 1 store/CP.

Table 1.Characteristics of the CRAY T3E systems installed at the Research Centre Jülich.

T3E-600 T3E-900

Number of application PE 512 256
Processor clock 300 MHz 450 MHz
Mflops (peak per PE) 600 900
Main memory (per PE) 128 MByte 128 MByte
Primary data cache (per PE) 8 KB 8 KB
Secondary cache (per PE) 96 KB 96 KB
Memory bandwidth 1200 MByte/s1200 MByte/s

Each PE is equipped with a local memory (DRAM) of 128, 256 or 512 MByte.
To maximize local memory bandwidth, 6 data stream buffers are available. They do a
prefetch from DRAM to cache for vector-like data referencesleading to a better perfor-
mance. Additionally, a set of 512 off-chip memory mapped external (E) registers can be
used, which directly load/store into/from the cache registers from/to the global memory.



For QCD simulations it is sometimes sufficient to perform thecalculations in half-
precision. On the T3E operations can only be performed in 64-bit precision due to
the 64-bit arithmetic of the processor. Nevertheless, it ispossible to use half-precision
variables (32 bit). Before being processed, they are extented to 64 bit, then processed
and finally reduced again to 32 bit. So it is not possible on theT3E to increase the
number of operations per clock period but one can profit from abetter cache usage.

The calculations are performed at the Research Centre Jülich on two CRAY T3E
systems: on a 512-node T3E-600 and and on a 256-node T3E-900.Table 1 summarizes
the main characteristics of these machines installed at Jülich.

5 Implementing the inversion algorithm on the CRAY T3E

The strategy for computing the quark propagators is as follows. First, a four-dimension-
al processor grid withnproc processors is defined, wherepx · py · pz · pt = nproc. Then,
the system is partitioned by dividing the four-dimensionallattice of sizeNx ·Ny ·Nz ·
Nt = V into local sublattices of sizenx · ny · nz · nt = Vloc with ni = Ni/pi.

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

�

�
�
�
�

�
�

�
�

�
�

n oe f n oe f n oe f

n oe f n oe f n oe f

l mc d l mc d l mc d

l mc d l mc d l mc d

i ka b i ka b i ka b

p q g h p q g h p q g h

n o e f n o e f n o e f

l m c d l m c d l m c d

i k a b i k a b i k a b

p qg h p qg h p qg h

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

�

�
�

�

�

�

�

�

� �
�

�

m d l c m d l c m d l c

m d l c m d l c m d l c

m d l c m d l c m d l c

f o e n f o e n f o e n1

f o e n f o e n f o e n1

f o e n f o e n f o e n1

q h p g q h p g q h p g

q h p g q h p g q h p g

b k a i b k a i b k a i

b k a i b k a i b k a i

Fig. 1. Blocked local lexicographic (left) and even-odd ordering (right)

The speed of the algorithm and the convergence depends on thelayout and the
ordering of the fields on each processor. The cache is used best by running the space-
time lattice index last. Two efficient orderings of the lattice sites are the even-odd or
checkerboard ordering and the local lexicographic ordering. The first one is easy to
vectorize or parallelize, because the even (odd) points areindependent from each other
(Fig. 1), while the second one is the most efficient way with regard to the number
of iterations [12]. In the forward (backward) solves the neighbours before (after) the
current site have to be considered, thus one needs to communicate the results of the
points on the boundary as soon as they are computed. In order to reduce the overhead for
the communication we introduce a further blocking within local lexicographic (BLL)
ordering on each processor (Fig. 1), which accelerates the Mflop rate by a factor of 3.

Cutting the local sub-lattice once in order to decouple the local data elements is
sufficient to achieve efficient pipelined communication. Hence, the blocking is called
one-dimensional. We remark that it would not be useful to perform two-dimensional



blocking (leading to four distinct local partitions) as theefficiency of local lexicographic
SSOR depends on the local lattice size and decreases for smaller local lattices.

In Fig. 1 the ordering of the sites corresponds to the alphabetic orderinga− q. The
arrows illustrate the points, which have to be taken into account for the update of one
of the sites in a two-dimensional analogue.

The program starts with an input phase. The gauge fields ({U}, 159 MByte on
the 243 × 40 lattice) and sometimes the starting vectors (φ, ψo, 637 MByte each on
the 243 × 40 lattice) are read in (in half-precision, because they were generated on
the APE100 in 32-bit precision). The I/O is implemented in parallel by letting thept

processors readnt files and send the data to those processors belonging to the same
time-slices. Making use of user-triggered disk-striping by distributing the files over
different partitions, a performance of up to 120 MBytes/s can be reached. When the
data are read in and distributed, they finally have to be converted to 64 bit. Now the
inversion algorithm can start.

One iteration step for solving the linear equationMψ = φ involves four basic
operations:

1. communication of the boundary values,
2. vector inner products,
3. AXPY vector operations (y = y + α ∗ x),
4. matrix-vector multiplications.

For the communication, the Cray-specific shared memory routines (shmemput and
shmemget) are used which transfer the data directly between the localand remote mem-
ories. For standard message-passing routines like MPI about 10% of the total computer
time is spent on communication. With shared memory routines, communication is a
factor of 2 to 3 faster for our code.

In case of the inner products and AXPY operations, Fortran 90, BLAS, and assem-
bler routines can be compared. We found that for our application there is nearly no
difference between the different routines, but on the Fortran level, it is worthwhile tak-
ing care that all cache entries are used as often as possible and padding the arrays to
avoid cache conflicts. E.g. the operationy = x+ β ∗ y followed byz = x+ α ∗ y runs
with 86 Mflops (on the T3E-900) while the performance goes up to 175 Mflops if both
operations are done in one stepz = x+ α ∗ (z + β ∗ y).

Around 80% of the computer time is spent for the forward/backward solve or, in
case of even-odd ordering, for the matrix-vector multiplication, which from the pro-
gramming point of view is essentially the same. Therefore, we spent most of our effort
on optimizing this operation. Looking at the fermion matrixin more detail, the number
of SU(3)-multiplications can be reduced by a factor of 2 by noting that the4×4 matrix
mα,α′ can be split into the matricesp of size4 × 2 andq of size2 × 4. This is known
as the Wilson trick. The matrixM of (2) takes the form

δc,c′
α,α′

δx,x′ − κ
4∑

µ=1

2∑

α′′=1

(
q−µ,α,α′′U

+c,c′
µ (x− µ)p−µ,α′′,α′δ(x−µ),x′

+ qµ,α,α′′U
c,c′
µ (x)pµ,α′′,α′δ(x+µ),x′

)
= M c,c′

α,α′
(x, x′) .

(6)



For further discussion of the parallel implementation, letus consider the last term

4∑

α′=1

2∑

α′′=1

3∑

c′=1

qµ,α,α′′U
c,c′
µ (x)pµ,α′′α′χ(x+ µ)c′

α′
= y(x)c

α . (7)

A standard way to compute (7) in four steps is:

1. – Communicate the boundary ofχ (done globally for the whole vectorχ).
– Computepµ,α′′α′χ(x+ µ)c′

α′
= χ(x)′c′α′′

for a specific sitex.
– ComputeUµ(x)c,c′χ(x)′c′α′′

= χ(x)′′cα′′
for a specific sitex.

– Computeqµ,α,α′′χ(x)′′cα′′
= y(x) for a specific sitex.

Using even-odd ordering there is another possible way to proceed in five steps:

2. – Computepµ,α′′α′χ(x)c′
α′

= ω(x)c′
α′′

for all sitesx.
– Communicateω(x) to its neighbourx+ µ.
– Gather result inχ(x)′.
– ComputeUµ(x)c,c′χ(x)′c′α′′

= χ(x)′′cα′′
for all sitesx.

– Computeqµ,α,α′′χ(x)′′cα′′
= y(x) for all sitesx.

At first glance one would expect case 1 to be better suited to exploit cache reuse,
while case 2 should be able to exploit the stream buffers moreeffectively. This is con-
firmed by the single-processor results listed in Tab. 2, where one clearly sees that the
multiplicationUχ′ has a higher Mflop rate in case 2, while for the final multiplication
case 1 has the higher rate since it has better cache usage. From this performance com-
parison it can be concluded that at least on a Fortran programming level, case 1 is the
better choice.

Table 2.Single-processor performance in Mflops. Half-precision results are given in parentheses.

T3E-600 T3E-900
case 1 case 2 case 1 case 2

pµ,α′′α′χ
c′

α′
12 (20) 13 (27) 14 (25) 14 (36)

Uc,c′

µ
χ′

c′

α′′
70 (73) 94 (124) 96 (100) 138 (169)

qµ,α,α′′χ′′
c

α′′
26 (30) 20 (45) 24 (40) 21 (59)

complete computation of (7)48 (63) 39 (61) 63 (90) 48 (80)

overall performance of BiCGstab with SSOR
BLL ordering 59 (75) 67 (130)

even-odd ordering 62 (80) 85 (106)

Also, as expected, nearly all floating-point operations aregenerated by the complex
3 × 3 matrix-vector multiplication withUµ(x). On the other hand, the multiplications
with p andq are mainly load and store, becausem has a simple form, e.g. forµ=2:

p2 =

(
1 0 0 −1
0 1 1 0

)

These multiplications are hard to optimize because the performance is limited by the
bandwidth between memory and cache.



Comparing the results on the T3E-600 with the ones obtained on the T3E-900
one clearly sees that the application speeds up very well forthose parts which are
not memory-bounded, e.g.U c,c′

µ χ′c′α′′
. If mainly load/store operations are performed

(pµ,α′′α′χ
c′
α′

or qµ,α,α′′χ′′
c
α′′

), the code cannot gain from the increased processor speed
due to the bottleneck of memory access time.

6 Single-processor optimization

The performance obtained up to now implies automatic (Fortran 90 compiler options
for intrinsic vectorisation and unrolling) and manual optimizations (index permutations,
loop interchange to improve cache usage, common block padding to avoid Scache con-
flicts and keeping the number of active data streams to 6 or less wherever possible). To
improve the performance further, we decided to use assembler programming for the ker-
nel routines. As a first step, the multiplication withU was rewritten in assembler. The
performance results are listed in Tab. 3. A significant improvement can be observed in
cases 1 and 2, indicating that the hand-written assembler routine makes much better use
of the registers.

Table 3. Single-processor performance of assembler code in Mflops. Half-precision results are
given in parentheses.

T3E-600 T3E-900
case 1 case 2 case 1 case 2

Uc,c′

µ
χ′

c′

α′′
150 (158) 168 (240) 185 (207) 221 (320)

complete computation of (7)67 (81) 45 (72) 89 (116) 52 (98)

Further improvements are expected by extending the assembler programming to
more steps needed for the calculation of (7), especially forcase 2 where the inner loop
over the sitesx implies a very efficient use of the streams buffers. It might be possible
that a hand-written assembler program can benefit much more from this effect than the
corresponding Fortran routine. Our attempt is to speed up case 2 as much as possible
in order to finally obtain a BiCGstab algorithm with even-oddodering which converges
faster in real time than the corresponding one with BLL ordering. For case 1 we do not
expect any further major acceleration because only site after site can be calculated.

One possibility is to combine the last three steps of case 2 inone assembler pro-
gram. In this case, we measured a performance of 108 Mflops (T3E-600), and 120
Mflops (T3E-900) respectively. However, the assembler codenow contains the gather
instruction of the nearest neighbour sites as well as the multiplication with the matrix
q, which have both very low Mflop rates. Combining these steps with the matrix-vector
multiplication leads to more effective use of cache resident data and eliminates some of
the intermediate steps (e.g. explicitly calculatingχ′′). This increases the performance
from 52 (98) Mflops (T3E-900) to 68 (120) Mflops in the completecomputation of (7).

Furthermore, it is possible to combine all steps of case 2 in one assembler rou-
tine, except the communication, which is done globally as incase 1. In this case the
single-processor performance of the assembler routine reached 85 (140) Mflops on the
T3E-600 and 92 (190) Mflops on the T3E-900. This disapointingperformance is caused



by the extra load and store instructions that have been addedto the assembler routine.
To understand why this happens one has to consider the architecture of the EV5 RISC
chip: even though four instructions are performed per clockperiod, some instructions
cannot be issued simultaneously in the same clock period (e.g. loads and stores). In ad-
dition, only one floating-point multiply or add may be issuedin the same clock period.
These factors make it very difficult to balance the requirements of the processor with
the practical nature of the problem, when the assembler codebecomes saturated with
load and store instructions, while the number of floating-point operations only increases
marginally. On the other hand, a performance improvement ofaround 20% for the com-
plete computation of (7) can be realized. Our currently bestperformance values for the
BiCGstab algorithms are summarized in Tab. 4.

Table 4. Improved overall performance (Mflops per processor) of the BiCGstab algorithm with
SSOR preconditioning. Half-precision results are given inparentheses.

T3E-600 T3E-900
case 1 case 2 case 1 case 2

BLL ordering 76 (95) 88 (127)

even-odd ordering 65 (80) 87 (115) 86 (110) 103 (148)

These data clearly show that the BiCGstab algorithm with even-odd ordering in the
implementation of case 2 is only slightly faster than the onewith BLL ordering in the
implementation of case 1. As mentioned in Chap. 5, the numberof iterations with BLL
ordering is roughly one half compared to even-odd ordering.Therefore, in real time
BLL ordering is still about 80% faster than even-odd ordering.

7 Summary

We have presented a discussion of optimized codes for lattice QCD on CRAY T3E sys-
tems. To improve the state-of-the-art BiCGstab inversion algorithm, we implemented
SSOR blocked lexicographic preconditioning which can be efficiently implemented on
parallel machines. Our optimization efforts were concentrated on the matrix-vector
multiplications since most of the processing time is spent in these routines. It was
demonstrated that assembler programming of kernel routines improves the overall per-
formance substantially. In assembler programming, we found that one of the main dif-
ficulties in optimizing codes on the CRAY T3E processing nodes is the efficient imple-
mention of instruction scheduling with respect to the complex memory system (on-chip
caches, stream buffers, E-registers), and the processor’scapability to perform four in-
structions per clock period.

The final performance of 20% of the peak speed on the T3E-600 with half-precision
data is consistent with the well known limitations of directmapped cache architectures.
Also on other popular machines used by the QCD community likethe APE100/Qua-
drics or CP-PACS, assembler programming and register optimization is mandatory
in order to achieve relative performances between 50 and 60%of their peak speed.
However, these systems profit from hardware optimizations relevant for efficient QCD
matrix-vector multiplications.



Acknowledgements

The authors gratefully acknowledge the computer time granted by the HLRZ on the
CRAY T3E systems of the Research Centre Jülich. They would like to thank E. An-
derson of Silicon Graphics / Cray Research for his advice andefforts with respect to
the assembler programming and R. Vogelsang from Silicon Graphics GmbH / Cray Re-
search for his continuous support.

References

1. Wilson, K.G.: Grand Challenges to computational science, Future Generation Computer Sys-
tems5 (1989) 171.

2. Aoki, S.: The QCD Teraflops Project, Int. J. Mod. Phys.C2 (1991) 829.
3. Zerwas, P.M., Kastrup, H.A. (eds.),QCD 20 years later (World Scientific, Singapore, 1992).
4. DeGrand, T.: Lattice Gauge Theory for QCD, COLO-HEP-378 (hep-ph/9610391), October

1996.
5. Particle data group, Phys. Rev.D54 (1996) 1.
6. Creutz, M. inQuarks, Gluons and Lattices (Cambridge University Press, Cambridge, 1983).
7. Glässner, U., Güsken, S., Hoeber, H., Lippert, Th., Luo, X., Ritzenhöfer, G., Schilling, K.,

Siegert, G.: QCD with dynamical Wilson fermions - first results from SESAM, Nucl. Phys.
B (Proc. Suppl.)47 (1996) 386;
Glässner, U., Güsken, S., Hoeber, H., Lippert, Th., Ritzenhöfer, G., Schilling, K., Siegart,
G., Wachter, A.: First Evidence ofNf -Dependence in the QCD Interquark Potential, Phys.
Lett. B383(1996) 98;
Eicker, N., Glässner, U., Güsken, S., Hoeber, H., Lippert, Th., Ritzenhöfer, G., Schilling, K.,
Siegart, G., Spitz, A., Ueberholz, P., Viehoff, J.: Evaluating sea quark contributions to flavour
singlet operators in lattice QCD, Phys. Lett.B389(1996) 720.

8. Conti, L., Eicker, N., Giusti, L., Glässner, U., Güsken, S., Hoeber, H., Lippert, Th., Mar-
tinelli, G., Rapuano, F., Ritzenhöfer, G., Schilling, K.,Siegert, G., Spitz, A., Viehoff, J.: Full
QCD with dynamical Wilson fermions on a243

×40 lattice - A feasibility study, Nucl. Phys.
B (Proc. Suppl.)53 (1997) 222;
Lippert, Th., Bali, G., Eicker, N., Giusti, L., Glässner, U., Güsken, S., Hoeber, H., Lacock, P.,
Martinelli, G., Rapuano, F., Ritzenhöfer, G., Schilling,K., Siegert, G., Spitz, A., Ueberholz,
P., Viehoff, J.: SESAM and TχL Results for Wilson Action: A Status Report, Nucl. Phys.B
(Proc. Suppl.)60A (1998) 311.

9. Attig, N.: QCD on Parallel Computers at the HLRZ Supercomputing Center, Proceedings of
Physics Computing ’96 (PC’96), Krakow, Poland, (1996) 536.

10. Lippert, Th., Schilling, K. and Petkov, N.: Quark Propagator on the Connection Machine,
Parallel Computing18 (1992) 1291.

11. Frommer, A., Hannemann, V., Lippert, Th., Nöckel, B., Schilling, K.: Accelerating Wilson
Fermion Matrix Inversions by Means of the Stabilized Biconjugate Gradient Algorithm, Int.
J. Mod. Phys.C5 (1994) 1073.

12. Fischer, S., Frommer, A., Glässner, U., Lippert, Th., Ritzenhöfer, G., Schilling, K.: A Parallel
SSOR Preconditioner for Lattice QCD, Comp. Phys. Comm.98 (1996) 20.

13. Eicker, N., Frommer, A., Hoeber, H., Lippert, Th., Medecke, B., Schilling, K., Weufen, G.:
Parallel SSOR preconditioners for Improved Actions in Lattice Field Theory, to appear in
Proceedings of PARCO’97, Bonn, Germany, (1997).


