000155191 001__ 155191
000155191 005__ 20240709082213.0
000155191 037__ $$aFZJ-2014-04372
000155191 041__ $$aEnglish
000155191 1001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b0$$eCorresponding Author$$ufzj
000155191 1112_ $$aInternational Symposium on Advanced Functional Materials$$cKuala Lumpur$$d2014-08-01 - 2014-08-02$$gISAFM 2014$$wMalaysia
000155191 245__ $$aDefect-Structure - Property Relationships in aliovalently doped and non-stoichiometric Perovskite Oxides
000155191 260__ $$c2014
000155191 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1408516610_5990$$xPlenary/Keynote
000155191 3367_ $$033$$2EndNote$$aConference Paper
000155191 3367_ $$2DataCite$$aOther
000155191 3367_ $$2ORCID$$aLECTURE_SPEECH
000155191 3367_ $$2DRIVER$$aconferenceObject
000155191 3367_ $$2BibTeX$$aINPROCEEDINGS
000155191 500__ $$aRüdiger-A. EichelInstitut für Energie- und Klimaforschung (IEK-9), Forschungszentrum Jülich, Germanyr.eichel@fz-juelich.de
000155191 502__ $$cRWTH AAchen
000155191 520__ $$aFerroelectric materials based on perovskite oxides offer the advantage that materials properties may be systematically tailored over a wide range either by controlling the microstructre in terms of processing or by means of aliovalent doping and defined non-stoichiometry [1]. Although the strategy of introducing atomic-scale defects that may form defect complexes, which in turn impact the mobility of ferroelectric domain walls, is valid not only for Pb[Zr,Ti]O3 (PZT), but also for lead-free alternatives [2] such as [Bi,Na]TiO3 (BNT) or [K,Na]NbO3 (KNN) for instance, the corresponding defect structure when using Fe2O3- or CuO-doping significantly differs from PZT with tetravalent B-site to KNN where the B-site is pentavalent.Focusing on 'hard' ferroelectrics, the energetics for the formation of dimeric [3,4] and trimeric [5,6] defect complexes between acceptor-type dopant ions and charge compensating oxygen vacancies is considered both from an experimental and theoretical perspective. Moreover, the position of these defects with respect to domain walls [7], their interaction with 180° and non-180° domain walls [5], as well as the reorientation of the defect dipoles during poling [8] is discussed.references:[1]	R.-A. Eichel, H. Kungl and P. Jakes, Mat. Tech. 28 (2013) 5 241[2]	R.-A. Eichel, H. Kungl, Funct. Mat. Lett. 3 (2010) 1–4[3]	R.-A. Eichel, P. Erhart, P. Träskelin, K. Albe, H. Kungl and M.J. Hoffmann, Phys. Rev. Lett. 100 (2008) 095504[4]	E. Aksel, E. Erdem, P. Jakes, J.L. Jones and R.-A. Eichel, Appl. Phys. Lett. 97  (2010) 012903[5]	R.-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker and M.J. Hoffmann, Appl. Phys. Lett. 102 (2013) 242908[6]	E. Erünal, P. Jakes, S. Körbel, J. Acker, H. Kungl, C. Elsässer, M.J. Hoffmann and R.-A. Eichel, Phys. Rev. B 84, (2011) 184113[7]	P. Jakes, E. Erdem, R.-A. Eichel, L. Jin and D. Damjanovic, Appl. Phys. Lett. 98  (2011) 072907[8]	L.X. Zhang, E. Erdem, X. Ren and R.-A. Eichel, Appl. Phys. Lett. 93 (2008) 202901
000155191 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x0
000155191 773__ $$y2014
000155191 909CO $$ooai:juser.fz-juelich.de:155191$$pVDB
000155191 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155191 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000155191 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x0
000155191 9141_ $$y2014
000155191 920__ $$lyes
000155191 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000155191 980__ $$aconf
000155191 980__ $$aVDB
000155191 980__ $$aI:(DE-Juel1)IEK-9-20110218
000155191 980__ $$aUNRESTRICTED
000155191 981__ $$aI:(DE-Juel1)IET-1-20110218