% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Eichel:155191,
author = {Eichel, Rüdiger-A.},
title = {{D}efect-{S}tructure - {P}roperty {R}elationships in
aliovalently doped and non-stoichiometric {P}erovskite
{O}xides},
school = {RWTH AAchen},
reportid = {FZJ-2014-04372},
year = {2014},
note = {Rüdiger-A. EichelInstitut für Energie- und Klimaforschung
(IEK-9), Forschungszentrum Jülich,
Germanyr.eichel@fz-juelich.de},
abstract = {Ferroelectric materials based on perovskite oxides offer
the advantage that materials properties may be
systematically tailored over a wide range either by
controlling the microstructre in terms of processing or by
means of aliovalent doping and defined non-stoichiometry
[1]. Although the strategy of introducing atomic-scale
defects that may form defect complexes, which in turn impact
the mobility of ferroelectric domain walls, is valid not
only for Pb[Zr,Ti]O3 (PZT), but also for lead-free
alternatives [2] such as [Bi,Na]TiO3 (BNT) or [K,Na]NbO3
(KNN) for instance, the corresponding defect structure when
using Fe2O3- or CuO-doping significantly differs from PZT
with tetravalent B-site to KNN where the B-site is
pentavalent.Focusing on 'hard' ferroelectrics, the
energetics for the formation of dimeric [3,4] and trimeric
[5,6] defect complexes between acceptor-type dopant ions and
charge compensating oxygen vacancies is considered both from
an experimental and theoretical perspective. Moreover, the
position of these defects with respect to domain walls [7],
their interaction with 180° and non-180° domain walls [5],
as well as the reorientation of the defect dipoles during
poling [8] is discussed.references:[1] R.-A. Eichel, H.
Kungl and P. Jakes, Mat. Tech. 28 (2013) 5 241[2] R.-A.
Eichel, H. Kungl, Funct. Mat. Lett. 3 (2010) 1–4[3] R.-A.
Eichel, P. Erhart, P. Träskelin, K. Albe, H. Kungl and M.J.
Hoffmann, Phys. Rev. Lett. 100 (2008) 095504[4] E. Aksel, E.
Erdem, P. Jakes, J.L. Jones and R.-A. Eichel, Appl. Phys.
Lett. 97 (2010) 012903[5] R.-A. Eichel, E. Erünal, P.
Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker and M.J.
Hoffmann, Appl. Phys. Lett. 102 (2013) 242908[6] E. Erünal,
P. Jakes, S. Körbel, J. Acker, H. Kungl, C. Elsässer, M.J.
Hoffmann and R.-A. Eichel, Phys. Rev. B 84, (2011) 184113[7]
P. Jakes, E. Erdem, R.-A. Eichel, L. Jin and D. Damjanovic,
Appl. Phys. Lett. 98 (2011) 072907[8] L.X. Zhang, E. Erdem,
X. Ren and R.-A. Eichel, Appl. Phys. Lett. 93 (2008) 202901},
month = {Aug},
date = {2014-08-01},
organization = {International Symposium on Advanced
Functional Materials, Kuala Lumpur
(Malaysia), 1 Aug 2014 - 2 Aug 2014},
subtyp = {Plenary/Keynote},
cin = {IEK-9},
cid = {I:(DE-Juel1)IEK-9-20110218},
pnm = {152 - Renewable Energies (POF2-152)},
pid = {G:(DE-HGF)POF2-152},
typ = {PUB:(DE-HGF)6},
url = {https://juser.fz-juelich.de/record/155191},
}