001     155191
005     20240709082213.0
037 _ _ |a FZJ-2014-04372
041 _ _ |a English
100 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a International Symposium on Advanced Functional Materials
|g ISAFM 2014
|c Kuala Lumpur
|d 2014-08-01 - 2014-08-02
|w Malaysia
245 _ _ |a Defect-Structure - Property Relationships in aliovalently doped and non-stoichiometric Perovskite Oxides
260 _ _ |c 2014
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1408516610_5990
|2 PUB:(DE-HGF)
|x Plenary/Keynote
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
500 _ _ |a Rüdiger-A. EichelInstitut für Energie- und Klimaforschung (IEK-9), Forschungszentrum Jülich, Germanyr.eichel@fz-juelich.de
502 _ _ |c RWTH AAchen
520 _ _ |a Ferroelectric materials based on perovskite oxides offer the advantage that materials properties may be systematically tailored over a wide range either by controlling the microstructre in terms of processing or by means of aliovalent doping and defined non-stoichiometry [1]. Although the strategy of introducing atomic-scale defects that may form defect complexes, which in turn impact the mobility of ferroelectric domain walls, is valid not only for Pb[Zr,Ti]O3 (PZT), but also for lead-free alternatives [2] such as [Bi,Na]TiO3 (BNT) or [K,Na]NbO3 (KNN) for instance, the corresponding defect structure when using Fe2O3- or CuO-doping significantly differs from PZT with tetravalent B-site to KNN where the B-site is pentavalent.Focusing on 'hard' ferroelectrics, the energetics for the formation of dimeric [3,4] and trimeric [5,6] defect complexes between acceptor-type dopant ions and charge compensating oxygen vacancies is considered both from an experimental and theoretical perspective. Moreover, the position of these defects with respect to domain walls [7], their interaction with 180° and non-180° domain walls [5], as well as the reorientation of the defect dipoles during poling [8] is discussed.references:[1] R.-A. Eichel, H. Kungl and P. Jakes, Mat. Tech. 28 (2013) 5 241[2] R.-A. Eichel, H. Kungl, Funct. Mat. Lett. 3 (2010) 1–4[3] R.-A. Eichel, P. Erhart, P. Träskelin, K. Albe, H. Kungl and M.J. Hoffmann, Phys. Rev. Lett. 100 (2008) 095504[4] E. Aksel, E. Erdem, P. Jakes, J.L. Jones and R.-A. Eichel, Appl. Phys. Lett. 97 (2010) 012903[5] R.-A. Eichel, E. Erünal, P. Jakes, S. Körbel, C. Elsässer, H. Kungl, J. Acker and M.J. Hoffmann, Appl. Phys. Lett. 102 (2013) 242908[6] E. Erünal, P. Jakes, S. Körbel, J. Acker, H. Kungl, C. Elsässer, M.J. Hoffmann and R.-A. Eichel, Phys. Rev. B 84, (2011) 184113[7] P. Jakes, E. Erdem, R.-A. Eichel, L. Jin and D. Damjanovic, Appl. Phys. Lett. 98 (2011) 072907[8] L.X. Zhang, E. Erdem, X. Ren and R.-A. Eichel, Appl. Phys. Lett. 93 (2008) 202901
536 _ _ |a 152 - Renewable Energies (POF2-152)
|0 G:(DE-HGF)POF2-152
|c POF2-152
|f POF II
|x 0
773 _ _ |y 2014
909 C O |o oai:juser.fz-juelich.de:155191
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156123
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Energie
|1 G:(DE-HGF)POF2-150
|0 G:(DE-HGF)POF2-152
|2 G:(DE-HGF)POF2-100
|v Renewable Energies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Technologie, Innovation und Gesellschaft
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21