001     155238
005     20210129214039.0
020 _ _ |a 0-89871-395-1
024 7 _ |a GVK:237933926
|2 GVK
037 _ _ |a FZJ-2014-04412
041 _ _ |a English
100 1 _ |a Basermann, Achim
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
111 2 _ |a Eighth SIAM Conference on Parallel Processing for Scientific Computing
|g PPSC 1997
|c Minneapolis
|d 1997-03-14 - 1997-03-17
|w USA
245 _ _ |a New Preconditioned Solvers for Large Sparse Eigenvalue Problems on Massively Parallel Computers
260 _ _ |a Philadelphia, Pa.
|c 1997
|b Society for Industrial and Applied Mathematics
295 1 0 |a Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1997
300 _ _ |a 8 p.
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1408542177_5992
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a We present preconditioned solvers to find a few eigenvalues and eigenvectors of large dense or sparse symmetric matrices based on the Jacobi-Davidson (JD) method by G. L. G. Sleijpen and H. A. van der Vorst. For preconditioning, we apply a new adaptive approach using the QMR iteration. To parallelize the solvers, we divide the interesting part of the spectrum into a few overlapping intervals and asynchronously exchange eigenvector approximations from neighboring intervals to keep the solutions separated. Per interval, matrix-vector and vector-vector operations of the JD iteration are parallelized by determining a data distribution and a communication scheme from an automatic analysis of the sparsity pattern of the matrix. We demonstrate the efficiency of these parallelization strategies by timings on an Intel Paragon and a Cray T3E system with matrices from real applications.
536 _ _ |a 899 - ohne Topic (POF2-899)
|0 G:(DE-HGF)POF2-899
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to GVK
650 _ 7 |a Parallelverarbeitung
|2 gbv
700 1 _ |a Steffen, Bernhard
|0 P:(DE-Juel1)132269
|b 1
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/155238/files/FZJ-2014-04412.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155238
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132269
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF2-890
|0 G:(DE-HGF)POF2-899
|2 G:(DE-HGF)POF2-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)VDB62
|k ZAM
|l Zentralinstitut für Angewandte Mathematik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)VDB62
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21