000155249 001__ 155249
000155249 005__ 20210129214040.0
000155249 037__ $$aFZJ-2014-04423
000155249 1001_ $$0P:(DE-HGF)0$$aBücker, H. Martin$$b0$$eCorresponding Author
000155249 1112_ $$a5th Copper Mountain Conference on Iterative Methods$$cCopper Mountain$$d1998-03-30 - 1998-04-03$$gCMCIM '98$$wUSA
000155249 245__ $$aThe Relation between Galerkin-Type and 1-Norm Quasi-Minimal Residual Iterative Methods
000155249 260__ $$c1998
000155249 29510 $$aProceedings of the 5th Copper Mountain Conference on Iterative Methods
000155249 300__ $$a10 p.
000155249 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1408542576_5992
000155249 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000155249 3367_ $$033$$2EndNote$$aConference Paper
000155249 3367_ $$2ORCID$$aCONFERENCE_PAPER
000155249 3367_ $$2DataCite$$aOutput Types/Conference Paper
000155249 3367_ $$2DRIVER$$aconferenceObject
000155249 3367_ $$2BibTeX$$aINPROCEEDINGS
000155249 520__ $$aThe main ingredients of any Krylov subspace method for the solution of systems of linear equations with nonsingular, in general non-Hermitian coefficient matrix are the generation of a suitable basis and the definition of the actual iterates. Two different strategies for defining the iterates are the Galerkin-type approach and the 1-norm quasi-minimal residual approach. Given any process to form a basis, it is shown that applying the 1-norm quasi-minimal residual approach corresponds to trivial residual smoothing of Galerkin-type iterative methods. An example involving the non-Hermitian Lanczos algorithm without look-ahead as the underlying technique for the generation of a basis is used to illustrate this relationship.
000155249 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000155249 773__ $$v2
000155249 8564_ $$uhttps://juser.fz-juelich.de/record/155249/files/FZJ-2014-04423.pdf$$yRestricted
000155249 909CO $$ooai:juser.fz-juelich.de:155249$$pVDB
000155249 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155249 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155249 920__ $$lyes
000155249 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000155249 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000155249 980__ $$acontrib
000155249 980__ $$aVDB
000155249 980__ $$acontb
000155249 980__ $$aI:(DE-Juel1)VDB62
000155249 980__ $$aI:(DE-Juel1)JSC-20090406
000155249 980__ $$aUNRESTRICTED
000155249 981__ $$aI:(DE-Juel1)JSC-20090406