001     155249
005     20210129214040.0
037 _ _ |a FZJ-2014-04423
100 1 _ |a Bücker, H. Martin
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
111 2 _ |a 5th Copper Mountain Conference on Iterative Methods
|g CMCIM '98
|c Copper Mountain
|d 1998-03-30 - 1998-04-03
|w USA
245 _ _ |a The Relation between Galerkin-Type and 1-Norm Quasi-Minimal Residual Iterative Methods
260 _ _ |c 1998
295 1 0 |a Proceedings of the 5th Copper Mountain Conference on Iterative Methods
300 _ _ |a 10 p.
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1408542576_5992
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The main ingredients of any Krylov subspace method for the solution of systems of linear equations with nonsingular, in general non-Hermitian coefficient matrix are the generation of a suitable basis and the definition of the actual iterates. Two different strategies for defining the iterates are the Galerkin-type approach and the 1-norm quasi-minimal residual approach. Given any process to form a basis, it is shown that applying the 1-norm quasi-minimal residual approach corresponds to trivial residual smoothing of Galerkin-type iterative methods. An example involving the non-Hermitian Lanczos algorithm without look-ahead as the underlying technique for the generation of a basis is used to illustrate this relationship.
536 _ _ |a 899 - ohne Topic (POF2-899)
|0 G:(DE-HGF)POF2-899
|c POF2-899
|x 0
|f POF I
773 _ _ |v 2
856 4 _ |u https://juser.fz-juelich.de/record/155249/files/FZJ-2014-04423.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155249
|p VDB
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF2-890
|0 G:(DE-HGF)POF2-899
|2 G:(DE-HGF)POF2-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)VDB62
|k ZAM
|l Zentralinstitut für Angewandte Mathematik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)VDB62
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21