000155275 001__ 155275
000155275 005__ 20220930130031.0
000155275 0247_ $$2doi$$a10.5194/amtd-7-8415-2014
000155275 0247_ $$2Handle$$a2128/9148
000155275 037__ $$aFZJ-2014-04449
000155275 082__ $$a550
000155275 1001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b0$$eCorresponding Author$$ufzj
000155275 245__ $$aIntercomparison of stratospheric gravity wave observations with AIRS and IASI
000155275 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2014
000155275 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1409217094_6675
000155275 3367_ $$2DataCite$$aOutput Types/Journal article
000155275 3367_ $$00$$2EndNote$$aJournal Article
000155275 3367_ $$2BibTeX$$aARTICLE
000155275 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155275 3367_ $$2DRIVER$$aarticle
000155275 520__ $$aGravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration's Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a five-year period of measurements (2008–2012) showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI (about 45%) that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data (about 30%) that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric gravity wave activity.
000155275 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000155275 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155275 7001_ $$0P:(DE-HGF)0$$aAlexander, M. J.$$b1
000155275 7001_ $$0P:(DE-HGF)0$$aClerbaux, C.$$b2
000155275 7001_ $$0P:(DE-HGF)0$$aGrimsdell, A. W.$$b3
000155275 7001_ $$0P:(DE-Juel1)156465$$aMeyer, Catrin$$b4$$ufzj
000155275 7001_ $$0P:(DE-Juel1)151377$$aRößler, T.$$b5$$ufzj
000155275 7001_ $$0P:(DE-HGF)0$$aTournier, B.$$b6
000155275 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amtd-7-8415-2014$$gVol. 7, no. 8, p. 8415 - 8464$$n8$$p8415 - 8464$$tAtmospheric measurement techniques discussions$$v7$$x1867-8610$$y2014
000155275 8564_ $$uhttps://juser.fz-juelich.de/record/155275/files/FZJ-2014-04449.pdf$$yOpenAccess
000155275 8767_ $$92014-10-08$$d2014-10-13$$eAPC$$jZahlung erfolgt$$pamt-2014-259
000155275 909CO $$ooai:juser.fz-juelich.de:155275$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000155275 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer Review
000155275 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000155275 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155275 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000155275 9141_ $$y2014
000155275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156465$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155275 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151377$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000155275 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000155275 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000155275 920__ $$lyes
000155275 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000155275 9801_ $$aFullTexts
000155275 980__ $$ajournal
000155275 980__ $$aVDB
000155275 980__ $$aUNRESTRICTED
000155275 980__ $$aI:(DE-Juel1)JSC-20090406
000155275 980__ $$aAPC