000155322 001__ 155322
000155322 005__ 20240712101019.0
000155322 0247_ $$2doi$$a10.5194/acpd-14-12591-2014
000155322 0247_ $$2ISSN$$a1680-7367
000155322 0247_ $$2ISSN$$a1680-7375
000155322 0247_ $$2Handle$$a2128/7950
000155322 037__ $$aFZJ-2014-04495
000155322 082__ $$a550
000155322 1001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b0$$eCorresponding Author$$ufzj
000155322 245__ $$aSecondary Organic Aerosol (SOA) formation from hydroxyl radical oxidation and ozonolysis of monoterpenes
000155322 260__ $$aKatlenburg-Lindau$$bEGU$$c2014
000155322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1415778687_17068
000155322 3367_ $$2DataCite$$aOutput Types/Journal article
000155322 3367_ $$00$$2EndNote$$aJournal Article
000155322 3367_ $$2BibTeX$$aARTICLE
000155322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155322 3367_ $$2DRIVER$$aarticle
000155322 520__ $$aOxidation by hydroxyl radical (OH) and ozonolysis are the two major pathways of daytime biogenic volatile organic compounds (VOCs) oxidation and secondary organic aerosol (SOA) formation. In this study, we investigated the particle formation of several common monoterpenes (α-pinene, β-pinene, and limonene) by OH dominated oxidation, which has seldom been investigated. OH oxidation experiments were carried out in the SAPHIR chamber in Jülich, Germany, at low NOx (0.01–1 ppbV) and low ozone (O3) concentration. OH concentration and OH reactivity were measured directly so that the overall reaction rates of organic compounds with OH were quantified. Multi-generation reaction process, particle growth, new particle formation, particle yield, and chemical composition were analyzed and compared with that of monoterpene ozonolysis. Multi-generation products were found to be important in OH dominated SOA formation. The relative role of functionalization and fragmentation in the reaction process of OH oxidation was analyzed by examining the particle mass and the particle size as a function of OH dose. We developed a novel method which quantitatively links particle growth to the reaction of OH with organics in a reaction system. This method was also used to analyze the evolution of functionalization and fragmentation of organics in the particle formation by OH oxidation. It shows that functionalization of organics was dominant in the beginning of the reaction (within two lifetimes of the monoterpene) and fragmentation started to be dominant after that. We compared particle formation from OH oxidation with that from pure ozonolysis. In individual experiments, growth rates of the particle size did not necessarily correlate with the reaction rate of monoterpene with OH and O3. Comparing the size growth rates at the similar reaction rates of monoterpene with OH or O3 indicates that generally, OH oxidation and ozonolysis had similar efficiency in particle growth. The SOA yield of α-pinene and limonene by ozonolysis was higher than that of OH oxidation. Aerosol mass spectrometry (AMS) shows SOA elemental composition from OH oxidation follows a slope shallower than −1 in the O / C vs. H / C diagram, indicating that oxidation proceeds without significant loss of hydrogen. SOA from OH oxidation had higher H / C ratios than SOA from ozonolysis. In ozonolysis, a process with significant hydrogen loss seemed to play an important role in SOA formation.
000155322 536__ $$0G:(DE-HGF)POF2-233$$a233 - Trace gas and aerosol processes in the troposphere (POF2-233)$$cPOF2-233$$fPOF II$$x0
000155322 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000155322 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155322 7001_ $$0P:(DE-Juel1)3039$$aKaminski, M.$$b1$$ufzj
000155322 7001_ $$0P:(DE-Juel1)4548$$aSchlag, P.$$b2$$ufzj
000155322 7001_ $$0P:(DE-Juel1)7363$$aFuchs, H.$$b3$$ufzj
000155322 7001_ $$0P:(DE-Juel1)136889$$aAcir, I.-H.$$b4$$ufzj
000155322 7001_ $$0P:(DE-Juel1)2693$$aBohn, B.$$b5$$ufzj
000155322 7001_ $$0P:(DE-Juel1)5628$$aHäseler, R.$$b6$$ufzj
000155322 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b7$$ufzj
000155322 7001_ $$0P:(DE-Juel1)16347$$aRohrer, F.$$b8$$ufzj
000155322 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b9$$ufzj
000155322 7001_ $$0P:(DE-Juel1)157833$$aWang, Mingjin$$b10$$ufzj
000155322 7001_ $$0P:(DE-Juel1)2367$$aWegener, R.$$b11$$ufzj
000155322 7001_ $$0P:(DE-Juel1)129421$$aWildt, J.$$b12$$ufzj
000155322 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b13$$ufzj
000155322 7001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b14$$ufzj
000155322 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acpd-14-12591-2014$$gVol. 14, no. 9, p. 12591 - 12634$$n9$$p12591 - 12634$$tAtmospheric chemistry and physics / Discussions$$v14$$x1680-7375$$y2014
000155322 8564_ $$uhttp://www.atmos-chem-phys-discuss.net/14/12591/2014/
000155322 8564_ $$uhttps://juser.fz-juelich.de/record/155322/files/FZJ-2014-04495.pdf$$yOpenAccess
000155322 8767_ $$92014-07-02$$d2014-07-08$$eAPC$$jZahlung erfolgt
000155322 909CO $$ooai:juser.fz-juelich.de:155322$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136801$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)3039$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4548$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136889$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5628$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157833$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2367$$aForschungszentrum Jülich GmbH$$b11$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129421$$aForschungszentrum Jülich GmbH$$b12$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich GmbH$$b13$$kFZJ
000155322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich GmbH$$b14$$kFZJ
000155322 9132_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vAtmosphäre und Klima$$x0
000155322 9131_ $$0G:(DE-HGF)POF2-233$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTrace gas and aerosol processes in the troposphere$$x0
000155322 9141_ $$y2014
000155322 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000155322 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000155322 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155322 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000155322 920__ $$lyes
000155322 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000155322 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000155322 9801_ $$aFullTexts
000155322 980__ $$ajournal
000155322 980__ $$aVDB
000155322 980__ $$aI:(DE-Juel1)IEK-8-20101013
000155322 980__ $$aI:(DE-Juel1)IBG-2-20101118
000155322 980__ $$aUNRESTRICTED
000155322 980__ $$aFullTexts
000155322 980__ $$aAPC
000155322 981__ $$aI:(DE-Juel1)ICE-3-20101013
000155322 981__ $$aI:(DE-Juel1)IBG-2-20101118