000155339 001__ 155339
000155339 005__ 20210129214053.0
000155339 020__ $$a0-8218-0530-4
000155339 0247_ $$2GVK$$aGVK:197706037
000155339 037__ $$aFZJ-2014-04512
000155339 041__ $$aEnglish
000155339 082__ $$a519.4
000155339 1001_ $$0P:(DE-HGF)0$$aBasermann, Achim$$b0
000155339 1112_ $$aAMS-SIAM Summer Seminar in Applied Mathematics$$cPark City$$d1995-07-17 - 1995-08-11$$wUSA
000155339 245__ $$aQMR and TFQMR Methods for Sparse Nonsymmetric Problems on Massively Parallel Systems
000155339 260__ $$aProvidence, RI$$bAmerican Mathematical Society$$c1996
000155339 29510 $$aThe Mathematics of Numerical Analysis
000155339 300__ $$a59-76
000155339 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1408692966_5996
000155339 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000155339 3367_ $$033$$2EndNote$$aConference Paper
000155339 3367_ $$2ORCID$$aCONFERENCE_PAPER
000155339 3367_ $$2DataCite$$aOutput Types/Conference Paper
000155339 3367_ $$2DRIVER$$aconferenceObject
000155339 3367_ $$2BibTeX$$aINPROCEEDINGS
000155339 4900_ $$aLectures in applied mathematics$$v32
000155339 520__ $$aMuch of the supercomputer research so far has concentrated on implementations of iterative methods for sparse symmetric positive definite matrices, in particular the preconditioned conjugate gradient algorithm, and an understanding of the parallel issues of this algorithm is emerging. Much less work has been done regarding iterative methods for nonsymmetric problems. In this article, parallel implementations of two important algorithms for nonsymmetric systems of equations, namely, the quasi-minimal residual (QMR) and transpose-free QMR (TFQMR) algorithms for solving sparse nonsymmetric systems of linear equations are investigated. The developed data distribution and communication scheme for multiprocessors with distributed memory are based on the analysis of the indices of the non-zero matrix elements. On a PARAGON XP/S 10 with 140 processors, the parallel variants of both QMR and TFQMR show an advantageous scaling behavior for matrices with different sparsity patterns stemming from real finite element applications.
000155339 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000155339 588__ $$aDataset connected to GVK
000155339 650_7 $$2gbv$$aNumerische Mathematik
000155339 8564_ $$uhttp://www.gbv.de/dms/hbz/toc/ht007326757.pdf
000155339 909CO $$ooai:juser.fz-juelich.de:155339$$pVDB
000155339 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155339 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000155339 920__ $$lyes
000155339 9201_ $$0I:(DE-Juel1)VDB62$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000155339 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000155339 980__ $$acontrib
000155339 980__ $$aVDB
000155339 980__ $$acontb
000155339 980__ $$aI:(DE-Juel1)VDB62
000155339 980__ $$aI:(DE-Juel1)JSC-20090406
000155339 980__ $$aUNRESTRICTED
000155339 981__ $$aI:(DE-Juel1)JSC-20090406