001     155339
005     20210129214053.0
020 _ _ |a 0-8218-0530-4
024 7 _ |a GVK:197706037
|2 GVK
037 _ _ |a FZJ-2014-04512
041 _ _ |a English
082 _ _ |a 519.4
100 1 _ |a Basermann, Achim
|0 P:(DE-HGF)0
|b 0
111 2 _ |a AMS-SIAM Summer Seminar in Applied Mathematics
|c Park City
|d 1995-07-17 - 1995-08-11
|w USA
245 _ _ |a QMR and TFQMR Methods for Sparse Nonsymmetric Problems on Massively Parallel Systems
260 _ _ |a Providence, RI
|c 1996
|b American Mathematical Society
295 1 0 |a The Mathematics of Numerical Analysis
300 _ _ |a 59-76
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1408692966_5996
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
490 0 _ |a Lectures in applied mathematics
|v 32
520 _ _ |a Much of the supercomputer research so far has concentrated on implementations of iterative methods for sparse symmetric positive definite matrices, in particular the preconditioned conjugate gradient algorithm, and an understanding of the parallel issues of this algorithm is emerging. Much less work has been done regarding iterative methods for nonsymmetric problems. In this article, parallel implementations of two important algorithms for nonsymmetric systems of equations, namely, the quasi-minimal residual (QMR) and transpose-free QMR (TFQMR) algorithms for solving sparse nonsymmetric systems of linear equations are investigated. The developed data distribution and communication scheme for multiprocessors with distributed memory are based on the analysis of the indices of the non-zero matrix elements. On a PARAGON XP/S 10 with 140 processors, the parallel variants of both QMR and TFQMR show an advantageous scaling behavior for matrices with different sparsity patterns stemming from real finite element applications.
536 _ _ |a 899 - ohne Topic (POF2-899)
|0 G:(DE-HGF)POF2-899
|c POF2-899
|x 0
|f POF I
588 _ _ |a Dataset connected to GVK
650 _ 7 |a Numerische Mathematik
|2 gbv
856 4 _ |u http://www.gbv.de/dms/hbz/toc/ht007326757.pdf
909 C O |o oai:juser.fz-juelich.de:155339
|p VDB
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF2-890
|0 G:(DE-HGF)POF2-899
|2 G:(DE-HGF)POF2-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)VDB62
|k ZAM
|l Zentralinstitut für Angewandte Mathematik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)VDB62
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21