000155353 001__ 155353 000155353 005__ 20240313103131.0 000155353 0247_ $$2Handle$$a2128/9176 000155353 037__ $$aFZJ-2014-04526 000155353 041__ $$aEnglish 000155353 1001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b0$$eCorresponding Author$$ufzj 000155353 1112_ $$aINM Retreat 2013$$cJülich$$d2013-07-02 - 2013-07-03$$wGermany 000155353 245__ $$a20 years of NEST: a mature brain simulator 000155353 260__ $$c2013 000155353 3367_ $$033$$2EndNote$$aConference Paper 000155353 3367_ $$2BibTeX$$aINPROCEEDINGS 000155353 3367_ $$2DRIVER$$aconferenceObject 000155353 3367_ $$2ORCID$$aCONFERENCE_POSTER 000155353 3367_ $$2DataCite$$aOutput Types/Conference Poster 000155353 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1570523102_2021$$xOther 000155353 520__ $$aimulators have been developed, each specialized on one or few spatial and temporal scales [1]. But thereliable and reproducible simulation of such complex systems as the brain is a very demanding challenge.Thus, the Computational Neuroscience community concentrated on a few reliable and widely used simula-tion tools in recent years. This concentration was not least the result of a series of large-scale EU fundedprojects, such as FACETS, BrainScaleS and the recently announced Human Brain Project.From its humble beginnings as a PhD-student project 20 years ago, the Neural Simulation Tool NEST [2]saw its first incarnation as the SYNOD simulator in 1995 [3]. By tightly coupling software development withcomputational neuroscience research [4], simulator technology evolved steadily, facilitating new scientificinsight at almost every step. Some key examples were parallelization [5,6], exact integration of modelequations [7], precise spike times in a time-driven simulator [8,9], spike-timing dependent [10] and neuro-modulated plasticity [11], and a Topology module for spatially structured networks [12]. Streamlined datastructures [13] allow NEST to efficiently exploit the capabilities of some of the largest computers on Earth forsimulations on the brain scale [14]. Systematic quality assurance through testsuites [15] and continuousintegration technology [16] ensure simulator reliability. With a user-friendly Python-based interface [17],integration with PyNN [18] for simulator-independent scripting and MUSIC support [19] for integrated multi-scale simulation, NEST is a powerful simulation tool for brain-scale simulations today. References[1] Brette et al (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J Comput Neurosci.[2] Gewaltig & Diesmann (2007) NEST (NEural Simulation Tool). Scholarpedia.[3] Diesmann et al. (1995) SYNOD: an Environment for Neural Systems Simulations. The Weizmann Institute of Science.[4] Kunkel et al. (2010) NEST: Science-driven development of neuronal network simulation software.[5] Morrison et al. (2005) Advancing the boundaries of high connectivity network simulation with distributed computing.[6] Plesser et al. (2007) Efficient Parallel Simulation of Large-Scale Neuronal Networks on Clusters of Multiprocessor Computers.[7] Rotter & Diesmann (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling.[8] Morrison et al. (2007) Exact subthreshold integration with continuous spike times in discrete time neural network simulations.[9] Hanuschkin et al. (2010) A general and efficient method for incorporating exact spike times in globally time-driven simulations.[10] Morrison et al. (2007) Spike-time dependent plasticity in balanced recurrent networks.[11] Potjans et al. (2010) Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.[12] Plesser & Enger (2013) NEST Topology User Manual.[13] Kunkel (2011) Meeting the memory challenges of brain-scale network simulation Front.[14] Helias et al. (2012 Supercomputers ready for use as discovery machines for neuroscience.[15] Eppler et al. (2009) A testsuite for a neural simulation engine.[16] Zaytsev (2013) Increasing quality and managing complexity in neuroinformatics software development with continuous integration.[17] Eppler et al. (2008) PyNEST: A Convenient Interface to the NEST Simulator.[18] Davison et al. (2008) PyNN: a common interface for neuronal network simulators.[19] Djurfeldt et al. (2010) Run-time interoperability between neuronal network simulators based on the MUSIC framework. 000155353 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0 000155353 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x1 000155353 536__ $$0G:(EU-Grant)269921$$aBRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)$$c269921$$fFP7-ICT-2009-6$$x2 000155353 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x3 000155353 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x4 000155353 7001_ $$0P:(DE-Juel1)151364$$aKunkel, Susanne$$b1$$ufzj 000155353 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b2$$ufzj 000155353 7001_ $$0P:(DE-Juel1)151167$$aZaytsev, Yury$$b3$$ufzj 000155353 7001_ $$0P:(DE-HGF)0$$aPlesser, Hans Ekkehard$$b4 000155353 7001_ $$0P:(DE-HGF)0$$aGewaltig, Marc-Oliver$$b5 000155353 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b6$$ufzj 000155353 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b7$$ufzj 000155353 773__ $$y2013 000155353 8564_ $$uhttps://juser.fz-juelich.de/record/155353/files/FZJ-2014-04526.pdf$$yOpenAccess 000155353 909CO $$ooai:juser.fz-juelich.de:155353$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire 000155353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000155353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151364$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000155353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000155353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151167$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000155353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich GmbH$$b6$$kFZJ 000155353 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000155353 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0 000155353 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0 000155353 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x1 000155353 9141_ $$y2014 000155353 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000155353 920__ $$lyes 000155353 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0 000155353 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000155353 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2 000155353 9801_ $$aFullTexts 000155353 980__ $$aposter 000155353 980__ $$aVDB 000155353 980__ $$aI:(DE-Juel1)INM-6-20090406 000155353 980__ $$aI:(DE-Juel1)JSC-20090406 000155353 980__ $$aI:(DE-Juel1)IAS-6-20130828 000155353 980__ $$aUNRESTRICTED 000155353 981__ $$aI:(DE-Juel1)IAS-6-20130828 000155353 981__ $$aI:(DE-Juel1)JSC-20090406 000155353 981__ $$aI:(DE-Juel1)IAS-6-20130828