001     155353
005     20240313103131.0
024 7 _ |a 2128/9176
|2 Handle
037 _ _ |a FZJ-2014-04526
041 _ _ |a English
100 1 _ |a Eppler, Jochen Martin
|0 P:(DE-Juel1)142538
|b 0
|e Corresponding Author
|u fzj
111 2 _ |a INM Retreat 2013
|c Jülich
|d 2013-07-02 - 2013-07-03
|w Germany
245 _ _ |a 20 years of NEST: a mature brain simulator
260 _ _ |c 2013
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1570523102_2021
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a imulators have been developed, each specialized on one or few spatial and temporal scales [1]. But thereliable and reproducible simulation of such complex systems as the brain is a very demanding challenge.Thus, the Computational Neuroscience community concentrated on a few reliable and widely used simula-tion tools in recent years. This concentration was not least the result of a series of large-scale EU fundedprojects, such as FACETS, BrainScaleS and the recently announced Human Brain Project.From its humble beginnings as a PhD-student project 20 years ago, the Neural Simulation Tool NEST [2]saw its first incarnation as the SYNOD simulator in 1995 [3]. By tightly coupling software development withcomputational neuroscience research [4], simulator technology evolved steadily, facilitating new scientificinsight at almost every step. Some key examples were parallelization [5,6], exact integration of modelequations [7], precise spike times in a time-driven simulator [8,9], spike-timing dependent [10] and neuro-modulated plasticity [11], and a Topology module for spatially structured networks [12]. Streamlined datastructures [13] allow NEST to efficiently exploit the capabilities of some of the largest computers on Earth forsimulations on the brain scale [14]. Systematic quality assurance through testsuites [15] and continuousintegration technology [16] ensure simulator reliability. With a user-friendly Python-based interface [17],integration with PyNN [18] for simulator-independent scripting and MUSIC support [19] for integrated multi-scale simulation, NEST is a powerful simulation tool for brain-scale simulations today. References[1] Brette et al (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J Comput Neurosci.[2] Gewaltig & Diesmann (2007) NEST (NEural Simulation Tool). Scholarpedia.[3] Diesmann et al. (1995) SYNOD: an Environment for Neural Systems Simulations. The Weizmann Institute of Science.[4] Kunkel et al. (2010) NEST: Science-driven development of neuronal network simulation software.[5] Morrison et al. (2005) Advancing the boundaries of high connectivity network simulation with distributed computing.[6] Plesser et al. (2007) Efficient Parallel Simulation of Large-Scale Neuronal Networks on Clusters of Multiprocessor Computers.[7] Rotter & Diesmann (1999) Exact digital simulation of time-invariant linear systems with applications to neuronal modeling.[8] Morrison et al. (2007) Exact subthreshold integration with continuous spike times in discrete time neural network simulations.[9] Hanuschkin et al. (2010) A general and efficient method for incorporating exact spike times in globally time-driven simulations.[10] Morrison et al. (2007) Spike-time dependent plasticity in balanced recurrent networks.[11] Potjans et al. (2010) Enabling functional neural circuit simulations with distributed computing of neuromodulated plasticity.[12] Plesser & Enger (2013) NEST Topology User Manual.[13] Kunkel (2011) Meeting the memory challenges of brain-scale network simulation Front.[14] Helias et al. (2012 Supercomputers ready for use as discovery machines for neuroscience.[15] Eppler et al. (2009) A testsuite for a neural simulation engine.[16] Zaytsev (2013) Increasing quality and managing complexity in neuroinformatics software development with continuous integration.[17] Eppler et al. (2008) PyNEST: A Convenient Interface to the NEST Simulator.[18] Davison et al. (2008) PyNN: a common interface for neuronal network simulators.[19] Djurfeldt et al. (2010) Run-time interoperability between neuronal network simulators based on the MUSIC framework.
536 _ _ |a 331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)
|0 G:(DE-HGF)POF2-331
|c POF2-331
|f POF II
|x 0
536 _ _ |a 89574 - Theory, modelling and simulation (POF2-89574)
|0 G:(DE-HGF)POF2-89574
|c POF2-89574
|f POF II T
|x 1
536 _ _ |a BRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)
|0 G:(EU-Grant)269921
|c 269921
|f FP7-ICT-2009-6
|x 2
536 _ _ |a W2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)
|0 G:(DE-HGF)B1175.01.12
|c B1175.01.12
|x 3
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 4
700 1 _ |a Kunkel, Susanne
|0 P:(DE-Juel1)151364
|b 1
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 2
|u fzj
700 1 _ |a Zaytsev, Yury
|0 P:(DE-Juel1)151167
|b 3
|u fzj
700 1 _ |a Plesser, Hans Ekkehard
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gewaltig, Marc-Oliver
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Morrison, Abigail
|0 P:(DE-Juel1)151166
|b 6
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 7
|u fzj
773 _ _ |y 2013
856 4 _ |u https://juser.fz-juelich.de/record/155353/files/FZJ-2014-04526.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:155353
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142538
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151364
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144806
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151167
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)151166
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144174
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-331
|2 G:(DE-HGF)POF2-300
|v Signalling Pathways and Mechanisms in the Nervous System
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89574
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2014
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828
981 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21