001     155360
005     20210129214056.0
024 7 _ |a 10.1016/j.jhydrol.2014.01.060
|2 doi
024 7 _ |a 1879-2707
|2 ISSN
024 7 _ |a 0022-1694
|2 ISSN
024 7 _ |a WOS:000339036100013
|2 WOS
037 _ _ |a FZJ-2014-04529
082 _ _ |a 690
100 1 _ |a Cornelissen, Thomas
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Significance of scale and lower boundary condition in the 3D simulation of hydrological processes and soil moisture variability in a forested headwater catchment
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1408693446_5992
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The measurement and simulation of soil moisture patterns and their spatio-temporal variability are current challenges in hydrology. This study investigated the capability of the three-dimensional model HydroGeoSphere to simulate hydrological processes, soil moisture dynamics and patterns at 25 and 100 m resolutions with daily and hourly time steps in a forested headwater catchment. All simulations reproduced discharge dynamics well, calculated a dominance of the baseflow component but missed macropore driven discharge peaks in the summer and slightly overestimated the discharge. A comparison of discharge and water balance results between daily and hourly time steps revealed considerable scaling issues of saturated conductivity values and in the model’s interception module. Temporally and spatially highly resolved soil moisture measurements were used to calibrate residual saturations and porosities at daily time steps. Therefore, all model setups simulated the long-term temporal soil moisture dynamics well, but short-term soil moisture dynamics were poorly simulated because the simulation did not take into account the effect of macropore flow. The spatial soil moisture patterns of the topsoil were well reproduced except for certain parts in the western part of the catchment. A correlation analysis revealed that the influence of the topography was overestimated in the simulated soil moisture pattern. The spatial scale dependency of all aforementioned results was small due to independent calibration. The consideration of bedrock damped discharge peaks, increased low flow and slightly improved temporal soil moisture simulation.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Diekkrüger, Bernd
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bogena, Heye R.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1016/j.jhydrol.2014.01.060
|g Vol. 516, p. 140 - 153
|0 PERI:(DE-600)1473173-3
|p 140 - 153
|t Journal of hydrology
|v 516
|y 2014
|x 0022-1694
856 4 _ |u https://juser.fz-juelich.de/record/155360/files/FZJ-2014-04529.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155360
|p VDB
|p VDB:Earth_Environment
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21