000155363 001__ 155363
000155363 005__ 20210129214056.0
000155363 0247_ $$2doi$$a10.1111/gwat.12080
000155363 0247_ $$2ISSN$$a1745-6584
000155363 0247_ $$2ISSN$$a0017-467X
000155363 0247_ $$2WOS$$aWOS:000339509600012
000155363 0247_ $$2altmetric$$aaltmetric:2534918
000155363 0247_ $$2pmid$$apmid:23750914
000155363 037__ $$aFZJ-2014-04532
000155363 082__ $$a550
000155363 1001_ $$0P:(DE-Juel1)156216$$aEngelhardt, I.$$b0$$eCorresponding Author$$ufzj
000155363 245__ $$aComplexity vs. Simplicity: Groundwater Model Ranking Using Information Criteria
000155363 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2014
000155363 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1408693625_5996
000155363 3367_ $$2DataCite$$aOutput Types/Journal article
000155363 3367_ $$00$$2EndNote$$aJournal Article
000155363 3367_ $$2BibTeX$$aARTICLE
000155363 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155363 3367_ $$2DRIVER$$aarticle
000155363 520__ $$aA groundwater model characterized by a lack of field data about hydraulic model parameters and boundary conditions combined with many observation data sets for calibration purpose was investigated concerning model uncertainty. Seven different conceptual models with a stepwise increase from 0 to 30 adjustable parameters were calibrated using PEST. Residuals, sensitivities, the Akaike information criterion (AIC and AICc), Bayesian information criterion (BIC), and Kashyap's information criterion (KIC) were calculated for a set of seven inverse calibrated models with increasing complexity. Finally, the likelihood of each model was computed. Comparing only residuals of the different conceptual models leads to an overparameterization and certainty loss in the conceptual model approach. The model employing only uncalibrated hydraulic parameters, estimated from sedimentological information, obtained the worst AIC, BIC, and KIC values. Using only sedimentological data to derive hydraulic parameters introduces a systematic error into the simulation results and cannot be recommended for generating a valuable model. For numerical investigations with high numbers of calibration data the BIC and KIC select as optimal a simpler model than the AIC. The model with 15 adjusted parameters was evaluated by AIC as the best option and obtained a likelihood of 98%. The AIC disregards the potential model structure error and the selection of the KIC is, therefore, more appropriate. Sensitivities to piezometric heads were highest for the model with only five adjustable parameters and sensitivity coefficients were directly influenced by the changes in extracted groundwater volumes.
000155363 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000155363 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000155363 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155363 7001_ $$0P:(DE-HGF)0$$aDe Aguinaga, J. G.$$b1
000155363 7001_ $$0P:(DE-HGF)0$$aMikat, H.$$b2
000155363 7001_ $$0P:(DE-HGF)0$$aSchüth, C.$$b3
000155363 7001_ $$0P:(DE-HGF)0$$aLiedl, R.$$b4
000155363 773__ $$0PERI:(DE-600)2066386-9$$a10.1111/gwat.12080$$gVol. 52, no. 4, p. 573 - 583$$n4$$p573 - 583$$tGround water$$v52$$x0017-467X$$y2014
000155363 909CO $$ooai:juser.fz-juelich.de:155363$$pVDB:Earth_Environment$$pVDB
000155363 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156216$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155363 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000155363 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000155363 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000155363 9141_ $$y2014
000155363 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155363 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155363 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155363 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155363 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155363 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155363 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155363 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155363 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000155363 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155363 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000155363 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000155363 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000155363 980__ $$ajournal
000155363 980__ $$aVDB
000155363 980__ $$aI:(DE-Juel1)IBG-3-20101118
000155363 980__ $$aUNRESTRICTED