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Abstract The Community Land Model (CLM) includes a large variety of parameterizations, also for flow
in the unsaturated zone and soil properties. Soil properties introduce uncertainties into land surface model
predictions. In this paper, soil moisture and soil properties are updated for the coupled CLM and Commu-
nity Microwave Emission Model (CMEM) by the Local Ensemble Transform Kalman Filter (LETKF) and the
state augmentation method. Soil properties are estimated through the update of soil textural properties
and soil organic matter density. These variables are used in CLM for predicting the soil moisture retention
characteristic and the unsaturated hydraulic conductivity, and the soil texture is used in CMEM to calculate
the soil dielectric constant. The following scenarios were evaluated for the joint state and parameter estima-
tion with help of synthetic L-band brightness temperature data assimilation: (i) the impact of joint state and
parameter estimation; (i) updating of soil properties in CLM alone, CMEM alone or both CLM and CMEM,; (iii)
updating of soil properties without soil moisture update; (iv) the observation localization of LETKF. The
results show that the characterization of soil properties through the update of textural properties and soil
organic matter density can strongly improve with assimilation of brightness temperature data. The opti-
mized soil properties also improve the characterization of soil moisture, soil temperature, actual evapotrans-
piration, sensible heat flux, and soil heat flux. The best results are obtained if the soil properties are updated
only. The coupled CLM and CMEM model is helpful for the parameter estimation. If soil properties are
biased, assimilation of soil moisture data with only state updates increases the root mean square error for
evapotranspiration, sensible heat flux, and soil heat flux.

1. Introduction

In general, land surface models and hydrologic models use many parameterizations to characterize the
water and energy balance [Han et al., 2012; Liang et al., 1994; Niu et al., 2011; Oleson et al., 2010; Sellers et al.,
1996]. Hydrological and thermal processes like the transport of water and energy between the land surface
and atmosphere are strongly controlled by the soil moisture and the temperature status of the soil. The
space-time dynamics of these state variables is dependent on soil material properties such as the hydraulic
and thermal conductivity. These soil material properties are difficult to obtain directly from measurements
and their upscaling to scales larger than the field scale is hampered through the lack of appropriate upscal-
ing methods and spatial information on heterogeneity. At many locations, no information is available on
key soil material properties. Pedotransfer functions have been developed in the past to estimate soil
hydraulic and thermal parameters from simple soil properties such as soil texture and soil organic carbon
without the need for direct measurements [Gutmann and Small, 2007; Vereecken et al., 2010]. These func-
tions have been successfully used in vadose zone and land surface models to predict water and matter
fluxes [Oleson et al., 2010; Rigon et al., 2006; Sim(inek et al., 2008]. However, an inaccurate or incorrect specifi-
cation of soil hydraulic and thermal parameters through inaccurate estimates of soil properties and/or
uncertain or inaccurate pedotransfer functions (sand, clay, and/or soil organic matter density) will introduce
biases into the model simulation of water and energy cycles [Dai et al., 2013; Duan et al., 2006; Huang and
Liang, 2006; Liu and Gupta, 20071]. As it is difficult to obtain information about soil hydraulic and thermal
parameter values and their statistics with a good spatial coverage, alternative approaches have to be used
to determine these parameters. Optimal estimates of these parameters can be derived through inverse
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modeling using measurements of state variables or through data assimilation approaches with spatially
retrieved remote sensing measurements.

Many parameter estimation approaches have been proposed to cope with the lack of knowledge of model
parameters and their statistics, such as generalized likelihood uncertainty estimation (GLUE) [Beven and Bin-
ley, 1992], the shuffled complex evolution method [Duan et al., 1992], shuffled complex evolution metropo-
lis [Vrugt et al., 2003], particle swarm optimization [Scheerlinck et al., 2009], differential evolution adaptive
metropolis [Vrugt and Ter Braak, 20111, multicriteria parameter estimation [Livneh and Lettenmaier, 2012], or
Bayesian recursive estimation [Thiemann et al., 2001]. However, the application of these methods in combi-
nation with large-scale land surface models is often complicated, as these methods require in general a
large number of model realizations, which are repeatedly applied on the complete time series under consid-
eration. A second complication is that these methods focus on parameter estimation, whereas in land sur-
face models other sources of uncertainty (especially uncertainty of the forcings and uncertainty/errors in
the model structure) also need to be considered. Whereas it is not trivial to define an adequate statistical
model of the space-time uncertainty of the forcings, it is even much more complicated to include the model
structural uncertainty in the analysis [Liu et al., 2012]. As a complication, the incorrect definition of forcing
errors and model structure in the context of parameter estimation might result in biased parameter esti-
mates. It is to be preferred to address the influences of model structural uncertainty and forcing data uncer-
tainty before parameter estimation [Liu and Gupta, 2007].

Data assimilation provides an approach to estimate soil hydraulic and thermal parameters or also vegeta-
tion parameters while considering model structural and model forcing uncertainties [Liu and Gupta, 2007].
In sequential data assimilation, several methods have been proposed for joint state and parameter estima-
tion. This joint scheme expands the data assimilation framework from updating the model states only to
updating both model states and model parameters. In general, two kinds of methods can be used to esti-
mate the states and parameters jointly: (1) SODA (Simultaneous Optimization and Data Assimilation). Here
the Bayesian filtering method is combined with an optimization algorithm to update the model states and
parameters separately [Vrugt et al., 2005]; (2) State augmentation approach. Here the model state vector is
augmented to include both model states and parameters in a new vector, and states and parameters are
updated simultaneously in the framework of the ensemble Kalman filter [Bateni and Entekhabi, 2012; Jaz-
winski, 1970; Nie et al., 2011; Schoniger et al., 2012].

Due to the computational burden of the SODA method (especially for complex distributed models), it has
not been applied widely. The state augmentation method has become a popular approach in recent data
assimilation applications, in which the ensemble Kalman filter [Moradkhani et al., 2005a; Nie et al., 2011;
Schoniger et al., 2012] or particle filter [Montzka et al., 2011; Moradkhani et al., 2005b] is used to estimate the
model states and model parameters jointly. These studies have shown the positive impacts of joint state
and parameter estimation on the characterization of model states, parameters, and fluxes. An additional
advantage is that temporally variable parameters can also be characterized with this approach [Kurtz et al.,
2012; Montzka et al., 2013al.

In this study, we want to evaluate the joint state and parameter estimation method for the coupled Com-
munity Land Model 4.5 (CLM) [Oleson et al., 2013] and Community Microwave Emission Model (CMEM) [de
Rosnay et al., 2009] through assimilation of synthetic microwave brightness temperature data. In land data
assimilation, soil moisture plays a key role. Microwave remote sensing measurements become more and
more important in soil moisture data assimilation for water resources management, runoff forecasting
[Brocca et al., 2010], and weather forecast [Drusch, 2007]. Multisource remote sensors can provide soil mois-
ture products for the regional or global scale, examples are the Soil Moisture and Ocean Salinity (SMOS)
mission [Kerr et al., 2010], Soil Moisture Active Passive (SMAP) Mission [Entekhabi et al., 2010], and the Euro-
pean Space Agency (ESA) Soil Moisture Climate Change Initiative (CCl) [Liu et al., 2011]. These large-scale
soil moisture products provide the opportunity for regional-scale land data assimilation and parameter esti-
mation. The European Center for Medium range Weather Forecasting (ECMWF) is using CMEM to assimilate
the SMOS brightness temperature into the forecast system [Sabater et al., 2012]. In CMEM, the Dobson
model [Dobson et al., 1985] is used to calculate the soil dielectric constant as a function of soil moisture,
sand fraction, clay fraction, sensor frequency, and surface soil temperature. Therefore, it is not only that the
CLM model results are sensitive to the sand, clay fractions, and organic matter density, but the sand and
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clay fractions are also very important to the L-band microwave brightness temperature modeling in CMEM.
Biased soil parameter values will result in poor model predictions of both CLM and CMEM.

Synthetic passive brightness temperature observations were assimilated instead of soil moisture in this
study for two reasons: (1) if directly soil moisture is assimilated (level 2 product), a microwave emission
model like CMEM was already used for obtaining the soil moisture estimates, and soil texture information
was used as input for these estimates. Erroneous soil texture parameters will also result in biased soil mois-
ture estimates. Moreover, if soil hydraulic parameters are estimated together with model states this can
result in soil texture/soil hydraulic parameters, which are different for CLM and CMEM and which are there-
fore inconsistent. The assimilation of brightness temperature can probably reduce the bias introduced by
erroneous soil texture information in both CLM and CMEM; (2) the soil temperature is also a necessary input
for microwave emission models like CMEM and will therefore also influence the soil moisture estimate. A
land surface model allows defining this input as well in a physically consistent matter, again providing con-
sistency between input for the microwave emission model and the land surface model.

The objectives of this study are: (1) to evaluate the feasibility of jointly estimating soil moisture and soil
hydraulic and thermal parameters in CLM using sequential data assimilation of synthetic L-band microwave
brightness temperature, (2) to analyze the impacts of soil properties estimation for the coupled CLM and
CMEM models, and (3) to study the impact of joint state and parameter estimation on the model states (soil
moisture, soil temperature) and surface fluxes. In order to be able to validate the results and in particular
the quality of the updated parameters, a synthetic study was designed. Assimilation of real-world data was
beyond the scope of this study. It requires a lot of additional sources of information like the temporal varia-
tion of vegetation properties (leaf area index, vegetation type). The coarse brightness temperature observa-
tions need to be downscaled, bias corrected, and validated carefully for the high-resolution study. The
downscaling of brightness temperature is still an ongoing subject of study with no straightforward solution
yet [Song et al., 2014]. Moreover, the real brightness temperature could be influenced by external noise,
such as the L-band radio frequency interference (RFI) [Oliva et al., 2012] and Faraday rotation [Sabater et al.,
2012]. The assimilation of multiple-incidence angle (SMOS) brightness temperature data also remains a chal-
lenge [Montzka et al., 2013a]. The synthetic study mimics the Rur catchment in Germany.

The structure of this paper is as follows: materials and methods (CLM, CMEM, LETKF, and updating soil states
and properties at grid cells without brightness temperature measurement) are introduced in section 2. Sec-
tion 3 explains the synthetic experiment setup. The results and discussion are presented in sections 4 and 5,
respectively. Section 6 presents the final conclusions.

2. Materials and Methods

Several studies focused on updating model parameters like the saturated hydraulic conductivity or the
Mualem-van Genuchten parameters of the governing Richards equation [Montzka et al., 2011; Nie et al.,
2011]. However, some land surface or hydrologic models (e.g., Community Land Model) use soil properties
(i.e., soil texture and soil organic matter density) in combination with model internal pedotransfer functions
to derive soil hydraulic and thermal parameter values. In this study, we focus on the update of these texture
classes and therefore on the associated soil hydraulic and thermal properties.

2.1. Community Land Model

We used the well-developed and versatile CLM to model the water and energy balance for the Rur catchment in
Germany (see section 3 for a description of the catchment). CLM uses a modified Richards equation to predict
the one-dimensional multilayer vertical soil water flow and energy transport. The Monin-Obukhov similarity
theory is used to derive the land surface fluxes. The spatial land surface heterogeneity is considered in CLM and
soil moisture, soil temperature, sensible heat flux, latent heat flux, and soil heat flux are model output [Oleson

et al,, 2013]. CLM uses the pedotransfer functions of sand and clay [Clapp and Hornberger, 1978; Cosby et al., 1984]
and organic properties of the soil [Lawrence and Slater, 2007] to derive soil hydraulic and thermal parameters.

In CLM, the soil profile is divided into 15 layers and the soil moisture is only simulated for the first 10 layers.
If i is the layer number, the hydraulic conductivity K (mm/s) is defined at the depth of the interface of two
adjacent layers i and i + 1. It is calculated as function of the saturated hydraulic conductivity Ky (mm/s)
and soil moisture content of the two layers i and i + 1 [0; (mm>?*/mm?) and 0,11 (mm>3/mm?)], saturated soil
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moisture content 0,5 (mm>3/mm?3) of the same two layers i and i + 1, the ice impedance factor J;c., and the
exponent B [Oleson et al., 2013].

0.5(0:+0; 2B+3
DiceKsat |:(I—I+1):| 1=i=9
O.S(HSGU‘ +95at.i+1 )
P M
0; 2B+3
ﬂiceKsar — i=10
Hsat‘i
Vige=10"5Fe @
0:
Fice= = ®

sat

where Fi is the ice-filled fraction of the pore space, the ice impedance factor ¥ is used to quantify the
increased tortuosity of the water flow when part of the pore space is filled with ice [Swenson et al., 2012].

The soil water matric potential ¢ (mm) is defined as:
P=PqeS° @)

where @, is the saturated matric potential (mm) and S (-) is the wetness of the soil layer with respect to sat-
uration (values between 0.01 and 1.0):

(psat:(1 7f0m)q)sar,min+(710'3)*f0m (5)

—10.0  10'-88-0.0131(%sand) ©

Psat,min =

where @4 min is the saturated mineral soil matric potential, %sand is the sand fraction (in %), fom is the
organic matter fraction (in %) [Oleson et al., 2013]. The direct input of CLM is organic matter density p,,
(kg/m?3), the organic matter fraction is defined as a function of organic matter, and 130 (kg/m?>) is the maxi-
mum organic matter density where soil is assumed to act like peat:

fom=pom/130.0 (7)

The saturated soil water content O is:

Osar = (1 _fom)(')sar,min +O-9*fom 8)

where the porosity of the mineral soil Osqt min is:

Osat, min=0.489—0.00126(%sand) Q)

The exponent B (an empirical parameter in Clapp-Hornberger parameterizations) [Clapp and Hornberger,
1978] is defined as:

B=(1—fom)(2.91+0.159(%clay) +2.7+f om (10)

where %clay is the clay fraction (in %).

The saturated hydraulic conductivity for mineral soil K¢ min (mm/s) is related to the sand fraction [Cosby
et al., 1984]:

Ksqt.min =0.0070556 1070,884+040153(%sand) 1

The saturated hydraulic conductivity K, (mm/s) is related to Ksat min:

0.5  (fon—0.5) " *" xfop  fom > 0.5
fperc:
0 fom < 0.5
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1~fom | fom—foerc] |
Ksat= (1 _fperc) * o4 om PR +fperc * Ksat.om (13)

Ksat,min Ksat,om

where fperc is the fraction of connected soil organic matter fraction for each grid cell and Ksat,om (Mmm/s) is
the saturated hydraulic conductivity for organic soils.

The thermal conductivity of soil solids, 4, (W/mK) is related to the organic matter fraction, sand fraction, and
clay fraction:

As=(1~Fom) s min+0.25%f o, (14)

where the mineral (min) soil solid thermal conductivity As min (W/mK) is:

8.8(%sand)+2.92(%clay)
(%sand) + (%clay)

/ls,mfn= (15)
The sand fraction, clay fraction, and organic matter density were chosen as the parameters to be estimated
instead of the soil hydraulic parameters of the equations given above. The direct update of hydraulic or
thermal parameters in CLM is not trivial as these equations are hard coded in CLM and only sand fraction,
clay fraction, and organic matter density are direct input data.

2.2, Synthetic L-Band Brightness Temperature Observation

Passive microwave remote sensing has been extensively applied in soil moisture retrieval. The microwave
emission radiometer at L-band (1.4 GHz) has been shown to be the best frequency for soil moisture detec-
tion and it is currently used in the SMOS satellite mission and will be used in the upcoming SMAP mission.
The Community Microwave Emission Model (CMEM) is developed for passive microwave soil moisture
retrieval and data assimilation purposes [de Rosnay et al., 2009; Holmes et al., 2008].

In CMEM, the soil brightness temperature TB,, (K), which is measured by the passive microwave remote
sensor, is expressed as:

TBtoa=TBqy +exp (_Tatm)*TBtov (16)

where TB,, (K) is the upwelling atmospheric brightness temperature, and 74, is the atmospheric optical
depth. The top of vegetation brightness temperature is obtained for the case that the vegetation is repre-
sented as a single scattering layer above a rough surface:

TBiov=TBioii * €XP (—Tyeq) + TByeg * [141; % €Xp (—Tyeg) | +TBag * Iy * €XP (—2 * Tyeg) (17)
where the soil contribution TBy; (K) is defined as:

TBsoit= Teff * € (18)

and the vegetation contribution 7B, (K) as:

TBreg= Tc* (1—w) * (1—exp(—Tyeg)) (19)

TBag (K) is the downwelling atmospheric brightness temperature. r, is the reflectivity of the rough surface
(equal to one minus the emissivity e), 7,4 is the vegetation optical depth along the viewing path, and 7, is
defined as the function of vegetation water content, which is calculated as 0.5x«Leafsrea;ndex.  is the single
scattering albedo. T (K) is the effective temperature of the surface medium and T, (K) is the canopy
temperature.

The emissivity e is computed as a function of the smooth surface emissivity [Wigneron et al., 2007]. The cal-

culation of smooth surface emissivity in CMEM is based on the Dobson model [Dobson et al., 1985] and Wil-
heit model [Parrens et al., 2014; Wilheit, 1978], which represent the soil as a stratified medium where the soil
dielectric constant and soil temperature vertical profiles are used to compute the resulting air-soil interface

emission and the contribution from each soil layer.
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For the horizontal polarization, the reflectivity r, is defined as:

2
145c0s (0)—/ usep—sin?sin(0) 20)
145€0s (0)+ / usep —sin?sin(0)

where (i is the soil magnetic permeability, 6 (°) is the sensor incidence angle, and ¢, is the complex,

smooth, bare soil dielectric constant.

With the Dobson model, the dielectric constant ¢, of wet soil can be calculated as:

to= {1 28 (1) 5w a;gm—sm] j(smP e ) (21)
Ps

B =(127.480 — 0.519 x* %sand—0.152 * %clay/100.0) (22)

B =(133.797 — 0.603 * %sand—0.166 * %clay/100.0) (23)

where p,, (g/cm?) is the soil bulk density; p, (g/cm?) soil particle density; &, is the dielectric constant of solid
particles; o is 0.65; SM (cm®/cm®) volumetric water content of soil; ¢ %, and &2, are dielectric constants of
free water included in the soil.

CMEM needs leaf area index, vegetation fractions, vertical profiles of soil moisture content and soil tempera-
ture (for seven layers), and land surface temperature, in our simulation experiments calculated by CLM, as
input for calculating L-band brightness temperature.

2.3. Local Ensemble Transform Kalman Filter

The Local Ensemble Transform Kalman Filter (LETKF) is one of the popular ensemble Kalman filter variants and
used frequently in atmospheric data assimilation [Hunt et al., 2007; Miyoshi and Yamane, 2007]. The LETKF
updates all model grid cells separately in an assimilation cycle and can be easily parallelized [Han et al., 2012;
Hunt et al., 2007]. This scheme is suitable for simulations with a large number of grid cells, such as high-resolution
regional data assimilation or global-scale data assimilation. This was an important reason to select LETKF as the
assimilation algorithm for this study. The reader is referred to Hunt et al. [2007] for further details about LETKF. In
order to estimate the soil moisture and soil properties simultaneously within the data assimilation framework,
the state augmentation method was used [Franssen and Kinzelbach, 2008; Li and Ren, 2011; Moradkhani et al,,
2005a; Yang and Delsole, 2009], in which the soil moisture and soil properties for each grid cell were augmented
into one state vector of LETKF and updated jointly using the same observations. In data assimilation, we first
used Wilheit model [Wilheit, 1978] to calculate the weights (the contribution of each soil layer to the air-soil inter-
face emission) of different soil layers and then treated the weighted soil moisture as the model prediction state
to be updated in assimilation. In theory, the soil moisture and soil properties can be updated simultaneously.
Because of the large computer memory requirements in joint state and parameter estimation, a dual step
approach was used, which estimates the parameter vector and the state vector separately and saves memory. In
the parameter estimation step, the augmented state vector contains the weighted soil moisture, sand fraction,
clay fraction, and organic matter density; in the state estimation step, it includes only the weighted soil moisture
followed by 10 layers of soil moisture values for each grid cell. The dual step approach gives the same results as
the one step approach but reduces memory requirements; the memory requirement of each separate step is
reduced, and this is especially helpful for large-scale assimilation on supercomputers with limited memory.

The analysis of LETKF is divided into two steps, the global operations and the local analysis:

1. Global operations: two global matrices are constructed after the forecast step:

XP=[x0—xb, ... x5—x7] (24)
yi =H() (25)
Ve=r=y Y] (26)
where x%, ... x} are the model forecast ensemble members, N is the ensemble size, X° is the ensemble

mean calculated over all ensemble members x?, ... x5, H is the observation operator (CMEM model in this
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study). In the parameter updating step, x,b and x° are composed of weighted soil moisture Oweighted, sand
fraction, clay fraction, and organic matter density; for state updating it consists of the weighted soil mois-
ture and soil moisture values for 10 soil layers and for each grid cell (04, . .., 010). Therefore, the dimension
of the augmented state vector for the parameter update is 4 (for each model grid cell) whereas it is 11 for
state update. The same weighted soil moisture content was used in both parameter update and soil mois-
ture update.

For the state update, the state vector x° is:

0weighted

x=| (27)

For the parameter update, the state vector X° is:

9weighted
Sand

Clay
Organic

Global operations are a preparation step of LETKF. LETKF updates the model grid cells separately, but the
state/observation vectors of all model grid cells only need to be prepared once. Moreover, because all the
data are recorded in the file, it is better to open the file once and read all the ensemble members of all
model grid cells instead of opening the file many times.

2. Local analysis: select the local observations for each model grid cell and calculate the local analysis error
covariance and perturbations in the ensemble space.

Calculate analysis error covariance matrix:
PI=[(N—1)I+Y* TR 1Y?) (29)
Next, the perturbations in ensemble space are calculated as:
We=[(N—1)pP%]"/? (30)

The perturbations in ensemble space are computed and added to each column of W to get the analysis
ensemble in ensemble space:

Wa:PabeR—1(yo_)—/b) (31)
The new analysis is calculated by:
X9=XWa+x° (32)

where R is the observation error covariance matrix, y° contains the observations and X contains the model
ensemble members after the update with LETKF (analysis).

An important issue for the ensemble-based method is that the assimilation performance depends strongly
on the ensemble spread. The ensemble spread may narrow down in the course of the parameter estimation
such that most of the ensemble members would become very close to the ensemble mean value. This will
result in filter divergence [Whitaker and Hamill, 2012] and ensemble inflation methods have been proven to
be an effective way to avoid filter divergence. In this study, the multiplicative inflation algorithm proposed
by Whitaker and Hamill [2012] was applied to the soil moisture and soil properties ensemble, in which the
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inflation of the posterior ensemble is proportional to the amount that observations reduce the ensemble
spread, resulting in more inflation in regions of dense observations.

b_ a
x‘?:x‘?(‘7 . d +1) (33)

where X{ is the updated model state of ensemble member i. 6° is the prior ensemble standard deviation
and g7 is the posterior ensemble standard deviation.

This methodology is designed to keep ensemble spread. For small ensemble sizes, which are often used in
combination with high-resolution physically based models, this is necessary to avoid a strong underestimation
of ensemble variance and associated filter divergence. The consequence of the multiplicative inflation applied
here is that the impact of data assimilation on reduction of prediction uncertainty cannot be assessed prop-
erly, as the spread is kept artificially large. This is a drawback of the applied inflation.

2.4. Local Analysis of Brightness Temperatures

For dense and high vegetation (e.g., forests), the soil contribution to the microwave emission is low and
masked by the vegetation. Soil moisture cannot be retrieved effectively for those areas and the uncertainty
is too high for adequate consideration during assimilation. Therefore, parts of the catchment will lack infor-
mation on the brightness temperature and will remain noncovered. We used a local analysis method pro-
posed in LETKF that exploits the presence of observations near noncovered regions to update the
brightness temperature at these locations [Greybush et al., 2011; Han et al., 2012; Hunt et al., 2007]. Han et al.
[2012] showed that a limited number of locations can be used to improve the assimilation results of noncov-
ered regions. This scheme was extended in this study to not only update soil moisture but also soil proper-
ties for both covered and noncovered areas. Surrounding local brightness temperature observations were
selected, based on the spatial correlation between the observation location and the grid cell for which an
update is required, and used for updating both states and soil properties at the given grid cell. The best fit-
ted semivariogram model was chosen from spherical model, exponential model, and Gaussian model at
each assimilation step for the brightness temperature data, and was used to weight the local selected obser-
vations [Han et al., 2012]. A correlogram was calculated using the normalized semivariogram value. The cor-
relogram is equal to 1 at the observation location, and it gradually reduces toward 0.0 as the distance from
the model grid cell increases [Han et al., 2012]. The selected observations were assimilated directly without
interpolation. The observation variance R was divided by the correlogram value corresponding to the obser-
vation location and model grid cell location. This increases the variance for observations situated far away
from the grid cell, which is updated, and decreases the contributions of those observations.

LETKF assimilates each model grid cell separately. In the LETKF analysis step, the observations to be assimi-
lated for each model grid cell need to be chosen based on the spatial correlation characteristics of observa-
tions. For those model grid cells for which a brightness temperature observation was available (i.e., covered
grid cells), only one local observation was assimilated for the joint state parameter estimation procedure.
For the nonobserved model grid cells, nine surrounding observations were used in the data assimilation
procedure. This is in correspondence with findings by Han et al. [2012]. However, for the local analysis of
nonobserved model grid cells that include parameter estimation, the optimum number of local observa-
tions was first evaluated in the scenarios of joint estimation.

3. Experiment Setup

3.1. Study Area

This synthetic assimilation study mimics the Rur catchment, which is located in the west of Germany bor-
dering to Belgium and Netherlands. The area of the Rur catchment is 2354 km? (Figure1). The southern
region corresponds to the hills of the Eifel and is covered by needleleaf and broadleaf forests and grassland,
and the annual precipitation and potential evapotranspiration for this region are 850-1300 and 450-

550 mm/yr, respectively. In the northern region, fertile agricultural land predominates, and the annual pre-
cipitation and potential evapotranspiration are 650-850 and 580-600 mm/yr, respectively [Montzka et al.,
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2008]. The Terrestrial Environmental
Observatories (TERENO) initiative has
established a dense network of measure-
ment instruments at the Rur catchment,
such as doppler radar for rainfall intensity
determination and automatic weather
stations, soil moisture networks, eddy-
covariance systems, cosmic ray sensors,
and radiometer systems [Bogena et al.,
2010; Zacharias et al., 2011]. The Rur
Catchment is also a validation site for the
ESA SMOS mission [Montzka et al., 2013b]
and the planned NASA SMAP mission.

51.2°N

51°N

50.8°N

50.6°N -

3.2. Reference Run
gl _ A reference run with, as input, the true
‘ . ' sand, silt, and clay fractions and true
bE 628 et see organic matter density as well as the true
Figure 1. Forest area (marked as star) map of the Rur catchment. model forcings was made for the period
from 1 April 2010 to 30 September 2010
after 1 year spin-up. This run serves as
the truth or reference for comparison in this Observing System Simulation Experiment (OSSE). The 3 months
OSSE period was characterized by a very dry first month, but in May 2010, rainfall was increased with a
series of rainfall events.

50.4°N

The CLM spatial resolution of the Rur catchment was 0.00833° (approximately 750 m) with in total 4340
active grid cells. We used the MODIS 500 m Plant Functional Type (PFT) product MCD12Q1, which was pro-
jected and resampled to 0.008333° with the nearest neighbor method [Sun et al., 2008] for fixing the vege-
tation type. Soil types were fixed based on the Harmonized World Soil Database v1.1 (HWSD) [FAO et al.,
2010]. The two layer soil data of HWSD were linearly interpolated to generate soil properties for 10 layers,
and the soil layer thicknesses of the first 10 layers are shown

in Figure 2. The atmospheric forcing provided by the Global
CEM Layer Depth (cm) Land Data Assimilation System (GLDAS) project [Rodell et al.,
2004] was interpolated using the bilinear IPOLATES grid inter-
1 . polation library (http://www.nco.ncep.noaa.gov/pmb/docs/
libs/iplib/ipolates.html) of National Centers for Environmental
2 4.31 Prediction (NCEP). The sand and clay content were rechecked
" — to make sure that their sum was less than 98% (we assumed
the silt fraction is always > 2%). If the sum of sand and clay
4 16.56 was greater than 98% after interpolation, the sand and clay
content are adjusted by subtracting the quantity
5 28.91 ((sand + clay) — 98)/2.0. The organic matter density was con-
strained by a maximum possible value of 0,130 kg/m? [Oleson
6 4929 et al., 2010]. The details of the input data preparation can be
found in Han et al. [2012].
7 82.89 The synthetic L-band brightness temperature observations
were calculated using the CMEM model and the soil moisture
8 138.28 and soil temperature data from the reference run of CLM. The
synthetic brightness temperatures were perturbed using spa-
9 22961 tially correlated noise derived from a spatially correlated
Gaussian random field with mean 0.0 K and an exponential
10 380.19 semivariogram model with nugget 0.0 K2, variance 4.0 K and
a range of 10 km. The variance value was based on literature
Figure 2. CLM soil layer depth distribution. value [Entekhabi et al., 2010]. After the generation of the
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Table 1. Summary of Perturbation Parameters for Atmospheric Forcing Data and the Cross-Correlation Coefficients Used to Model the
Correlations Among the Perturbations for the Different Variables

Standard Spatial Correlation Forcing Cross
Variables Noise Deviation Scale Correlation
Precipitation Multiplicative 0.5 10 km 1.0, —0.8, 0.5, 0.0,
Shortwave radiation Multiplicative 0.3 10 km —0.8,1.0, —0.5, 0.4,
Longwave radiation Additive 20 W/m? 10 km 0.5, —0.5, 1.0, 0.4,
Air temperature Additive 1K 10 km 0.0,0.4,04,1.0

correlated Gaussian field, only the observations located in the nonforested areas were selected to be used
in assimilation.

The spatial resolution we used for the measured synthetic L-band brightness temperature is higher than
that of the common passive microwave sensors such as SMOS and SMAP, which would be too coarse to be
applied at the catchment scale. We would only obtain few grid cells of observation data from the coarse
passive microwave sensors and would not catch the spatial heterogeneity of the soil moisture distribution.
Recently, various downscaling approaches [Mascaro et al., 2010; Merlin et al., 2013; Piles et al., 2011] have
been proposed to downscale the coarse microwave data to the scale of several kilometers using high spa-
tial resolution remote sensing data (e.g., MODIS). Similarly, several multiscale data assimilation approaches
have been proposed in the literature, where observations measured at a certain scale are assimilated into a
model at another scale [Montzka et al., 2012]. This was the motivation to assimilate higher-resolution down-
scaled L-band brightness temperature data in this study.

3.3. Data Assimilation Experiments

The OSSE was designed to assimilate synthetic L-Band brightness temperature data into CLM using a com-
bination of the CMEM model and the LETKF algorithm. The assimilation cycle mimics the ascending mode
passing time of the SMOS-satellite and is therefore carried out every 3 days at 06:00Z from 1 April 2010 to
30 June 2010. At these overpassing time steps, brightness temperature is assimilated into the model and
the radiative transfer model CMEM links measured brightness temperature and soil moisture content. From
1 July to 30 September, the CLM was driven by the updated soil properties without data assimilation.

Representing the different sources of uncertainty that affect model prediction is very important. There are
three main sources of uncertainties: (1) uncertainty in model parameters, (2) uncertainty in model forcing
data, and (3) model structure uncertainty including the formulation of the PTFs. The model structure uncer-
tainty is hard to quantify, and therefore in this study, the model prediction uncertainty is represented only
by uncertain model parameters and model forcing data. It is acknowledged that results will be affected by
neglecting model structural uncertainty and that results will be overoptimistic. However, this is one of the
first studies on the joint calibration of distributed states and parameters of a land surface model, using
sequential data assimilation, and it therefore provides a first indication of its feasibility. Sand fraction and
clay fraction were perturbed by adding a spatially uniform distributed noise in the range of [—10%, +10%],
and the range for perturbing organic matter density was [—10 (kg/m?), +10 (kg/m>)]. The soil properties
(sum of sand and clay content, organic matter density) were also in this case checked and properly
adjusted. The multiplicative inflation [Whitaker and Hamill, 2012] was applied to the soil properties after
each assimilation step to keep the standard deviation of the parameter ensemble members equal to the
standard deviation of the uniform distribution with the range of [—10%, +10%] for sand and clay fractions,
and [—10 (kg/m?3), +10 (kg/m?3)] for organic matter density.

In order to perturb precipitation, shortwave radiation, longwave radiation, and air temperature, spatially cor-
related noise was added to these model forcings. The spatial correlated noise was generated using a Fast
Fourier Transform approach [Park and Xu, 2009], in which the perturbations were kept physically consistent
(e.g., a positive perturbation of incoming shortwave radiation is related to a negative perturbation of incom-
ing longwave radiation and a positive perturbation of air temperature) to conserve the atmospheric balance
among radiation, clouds, and air temperature [Reichle et al., 2010]. The perturbation parameters according
to Reichle et al. [2007] are summarized in Table 1. The additive and multiplicative perturbations were
assumed to be normal distributed and lognormal distributed, respectively. The mean value for the perturba-
tive factors was equal to zero for the additive case and one for the multiplicative case.
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Perturbed Perturbed The biased soil properties used in

P Soil Properties Atmospheric Forcing the open loop run and data assimi-

| RS i lation runs were generated as fol-

| =~ - :

: =~ h b lows: the true sand fraction was

I CLM < multiplied by 0.5 and the true clay

I — fraction and organic matter density

+ g 2 by 2.0, and these perturbed soil

Soil Moisture, Soil inputs were used as the background

CMEM = — — i
Temperature, etc. value in the open !oop run and data
T assimilation experiments and repre-
Brightness Temperature . I .
£ SIV i sent biased a priori information on

the soil textural composition. Spatial

Brightness

LETKF [€rperatre|  Read Observation correlated noise was added to the
N reference sand fraction, clay fraction
# T P and organic matter density. The spa-
i Updated Updated (1] tially correlated perturbation was
Soil Properties Soil Moisture generated by the sequential Gaus-
sian simulation method [Goovaerts,
Figure 3. Data assimilation flowchart. 1997] with values in the interval of

[—5%, +5%], an exponential semi-
variogram model with nugget 0.0, variance 100.0, and range 10 km. The range of reference sand fraction
is [5%~80%], for clay fraction it is [3%~40%], and for organic matter density [1~130]. The spatial correla-
tion of soil properties can vary considerably for different areas, but a range value that is about 1/10 of the
simulation domain is a very typical value often used in simulation studies. The range of the perturbations
between —5% and +5% is chosen to introduce a more realistic spatial heterogeneity. In the open loop
run and assimilation runs, no spatial heterogeneity of soil properties was considered and the soil proper-
ties for each ensemble member were obtained by adding random noise to the homogeneous prior soil
properties.

CLM divides the soil properties into 10 layers, but input soil texture and organic matter density cannot be
obtained for the 10 layers at the catchment scale. For simplicity, only the first layer of sand fraction, clay
fraction, and organic matter density was involved in the parameter estimation. The soil properties for the
other (lower) layers were generated based on the a priori ratio of these properties.

The following state and parameter estimation strategies were evaluated and compared:
1. No data assimilation (Open Loop).

2. Data assimilation without soil hydraulic parameter estimation (Only_Assim).

Table 2. Configurations of Different Simulation/Assimilation Scenarios®

Number of Local

Number of Local Observations (for
Parameter Observations Parameter

Scenario Name Description Estimation (State) Estimation)
Open_Loop Run CLM ensembles only No N.A. N.A.
Only_Assim Update soil moisture only No 9 N.A.
Joint_1_Obs Update soil moisture and Yes 9 1
Joint_5_Obs soil properties with Yes 9 5
Joint_9_Obs perturbation of the forcings Yes 9 9
Joint_16_Obs Yes 9 16
Only_CLM Updated sand and clay Yes 9 1

fractions are only used in CLM
Only_CMEM Updated sand and clay fraction Yes 9 1

are only used in CMEM
Only_Parameter Update the sand fraction, clay Yes 9 1

fraction and organic matter density
only, no soil moisture update

“The number of local observations (to be assimilated for each model grid cell) refers to updating soil moisture and soil properties at
forest grid cells.
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35 3. Joint update of soil moisture

30l and soil properties with perturba-
w tion of the forcings. For this sce-
E 25¢ nario, three variants were
250 evaluated:
E is 3a. Optimized sand fraction,
g clay fraction, and organic mat-
= 10} 1 ter density were used in CLM
A gl E‘““\F_Hi = | and CMEM, in which different

~— Sand e+« Clay »—* Organic| number of local observations
: were assimilated for each

é’ackground 10_Ens 20_Ens 30_Ens 40_Ens 50 _Ens T .
assimilation step (Joint_1_Obs,

Figure 4. RMSE for sand (%), clay (%), and organic matter density (kg/m°) for different Joint_5_0Obs, Joint_9_Obs and
numbers of ensemble members (scenarios Joint_1_Obs_10, Joint_1_Obs_20, Join- Joint_16_Obs).
t_1_Obs_30, Joint_1_Obs_40, Joint_1_Obs_50), averaged over all grid cells. -

3b. Optimized sand fraction, clay
fraction, and organic matter density were only used in CLM, but not used in CMEM (Only_CLM).

3c. Optimized sand fraction, clay fraction, and organic matter density were only used in CMEM, but not
used in CLM (Only_CMEM).

4. Updating soil properties (both in CLM and CMEM) only without soil moisture update (Only_Parameter).
The data assimilation flow layout is illustrated in Figure 3.
The detailed configuration of each scenario is summarized in Table 2.

In order to evaluate the impact of the number of ensemble members on the parameter estimation
results, five additional simulation experiments for the scenario of Joint_1_Obs with 10, 20, 30, 40, and
50 ensemble members were evaluated. Figure 4 shows the RMSE for the soil properties for the scenar-
ios of joint estimation with one local observation and different numbers of ensemble members. With
more ensemble members, the estimation of the clay fraction is improved further, but the characteriza-
tion of the sand fraction and organic matter density worsened. The RMSE values of latent heat flux
and sensible heat flux for the assimilation period and the verification period (Figure 5) illustrate that
simulation results with more ensemble members improved compared to simulations with less ensem-
ble members. Therefore, 50 ensemble members were used in this study, balancing simulation accuracy
and computing efficiency.

Other land data assimilation studies used often a smaller number of ensemble members. Twelve ensemble
members were used by Kumar et al. [2009] and Reichle et al. [2010] and 20 members by De Lannoy et al.
[2012] and Pan and Wood [2010]. If the number of model grid cells is large, computational efficiency and
hard disk space requirements can become prohibitive as time series of all grid cells and all ensemble mem-
bers need to be stored for the post analysis.

4, Results

The results for the different simulation experiments were evaluated by the Root Mean Square Error (RMSE),
calculated for soil moisture and soil properties. The RMSE value for each grid cell over the complete time
series (and also separately for the verification and assimilation period) was calculated (this includes the 3
months assimilation period and 3 months verification period), and in addition, the average RMSE value over
all grid cells was determined according to:

N

amsE=, | (1/M) S (1N) S (B =01 (34

1 i=

where 5,»,,,, is the ensemble mean (either for open loop or data assimilation experiments), 0; », corresponds
to the reference run, N is the number of time steps (4392 in this study). For the soil properties, we only
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Figure 5. RMSE values of (left) latent heat flux and sensible heat flux (right) for open loop simulation (Open_Loop), single assimilation scenario (Only_Assim), and different numbers of
ensemble members (scenarios Joint_1_Obs_10, Joint_1_Obs_20, Joint_1_Obs_30, Joint_1_Obs_40, Joint_1_Obs_50) averaged over (top) assimilation period and (bottom) verification

period for all grid cells.

analyzed parameter values at the final assimilation step, so N is 1. M is the number of active grid cells
(4340). The smaller the RMSE value is, the better the assimilation results are.

Figure 6 shows the RMSE for the soil properties for the scenarios of joint estimation with different number
of local observations. It is obvious that the best estimation is for one local observation (Joint_1_Obs). The
use of more local observations (Joint_5_Obs, Joint_9_Obs and Joint_16_Obs) did not improve the parame-
ter estimation. In the rest of the paper, the results are discussed for the joint estimation scenario with one
local observation (Joint_1_Obs) if not otherwise indicated.

In Figure 7, the RMSE values for the characterization of soil properties are given for the scenarios where soil
properties are only updated in CLM (Only_CLM), only updated in CMEM (Only_CMEM), or updated in both CLM
and CMEM but without soil moisture update (Only_Parameter). The scenario Only_Parameter gives the best
characterization of soil properties. The performance of the scenarios Only_CLM and Only_CMEM is similar.

The estimated spatial distributions of the sand and clay fractions and organic matter density for the first soil
layer, estimated by data assimilation combined with parameter estimation, are compared to the true values
(reference) and background
35 . : (open loop) values for the sce-

30l nario Joint_1_Obs in Figure 8.
w The sand fraction increased
2 25} during data assimilation,
% 20! whereas clay fraction and
@ stk organic matter density values
E 15 decreased during data assimi-
§ ik lation for most of the area.
2 Assimilation of brightness
5t - temperature improved the
=—e Sand =—s (Clay e Orgamcl . . .
QB ; : : ‘ ‘ estimates of all soil properties
ackground 1 Obs 5 Obs 9 Obs 16_Obs with values much closer to the

Figure 6. RMSE for sand (%), clay (%), and organic matter density (kg/m?) for different reference values. The esti-

amounts of assimilated observations for the joint estimation scenario. mates of the soil properties
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Figure 7. RMSE for sand (%), clay (%), and organic matter density (kg/m?) for different sce-
narios where soil properties are only updated for CLM (Only_CLM), only updated for CMEM

. Backcjround

Only_CLM Only_CMEM

Only_Pa'rameter

(Only_CMEM), or soil properties are estimated without soil moisture update
(Only_Parameter).

(sand fraction and clay frac-
tion) for the forest area also
improved, although no direct
observations for these grid
cells were available, by taking
profit of the assimilation of
surrounding local observations
by LETKF.

As an example, for one
selected grid cell in the study
area, the ensemble of temporal
evolutions of estimated sand
and clay fractions, organic mat-
ter density, soil hydraulic
parameters B, and saturated

hydraulic conductivity (for the first soil layer) are plotted. The reference and background values and rainfall
are also indicated in Figure 9. The mean of the ensemble members approaches the true sand and clay con-
tent as well as the true soil organic matter density after 1 month of assimilation (i.e., after the first 10
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Figure 8. (top) Sand fraction (%), (middle) clay fraction (%), and (bottom) organic matter density (kg/m?) for the first soil layer. The true values are given in al-a3, the background values
in b1-b3, and the results for the scenario Joint_1_Obs in c1-c3.
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Figure 9. Sand fraction (%), clay fraction (%), organic matter density (kg/m?), soil hydraulic parame- T
9 i ; y o ¢ P depth over assimilation

ter B, and saturated hydraulic conductivity (mm/s) for the upper soil layer for the reference, back-
ground, ensemble mean, and 50 ensemble members. Results are given for the scenario period and verification
Joint_1_Obs at a crop land location (50.95°N, 6.2°E). period are plotted in Fig-

ures 10 and 11, respec-
tively. Figure 10 indicates that the assimilation of L-band brightness temperature data improves the soil
moisture estimation. The results with parameter estimation are better than those obtained without parame-
ter estimation, with best results for the scenario Only_Parameter. For the verification period, soil moisture
bias was again increased for the scenario of Only_Assim, but if parameters were calibrated, soil moisture
bias was reduced for the verification period (Figure 11), except for the scenario Only_CMEM.

The results for soil temperature indicate as well an improvement although less pronounced as for soil mois-
ture. The soil temperature is related to the soil moisture through the heat fluxes in CLM. The scenario of
Only_Assim resulted in worse latent heat flux, sensible heat flux, and soil heat flux, as compared to open
loop simulations and these biased heat fluxes affected the soil temperature simulation [Oleson et al., 2013].
An improvement of the simulated land surface fluxes is also expected to improve the temperature simula-
tion. If the optimized soil properties were only used in CLM (Only_CLM) or only in CMEM (Only_CMEM), the
updated soil moisture contents were better than for Only_Assim, but worse than for joint estimation scenar-
ios where soil properties were both updated in CLM and CMEM. For the characterization of soil temperature,
optimized soil properties for the scenarios Only_CLM and Only_CMEM did not result in as good results as
for joint estimation scenarios.

Figure 12 compares the latent, sensible, and soil heat flux with the equivalents from the reference fields for
the assimilation period and verification period separately. The results obtained for data assimilation without
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Figure 10. RMSE values of (rows 1 and 2) soil moisture and (rows 3 and 4) soil temperature at (a and e) 5 cm, (b and f) 10 cm, (c and g) 30 cm, and (d and h) 50 cm depth for all scenarios
and averaged over the assimilation period and all grid cells.

parameter estimation (Only_Assim) are worse than for open loop simulations; all surface fluxes clearly deter-
iorated after assimilation without parameter estimation. This can be explained by the fact that soil proper-
ties are biased, and now only states are updated, which in combination with the erroneous soil properties
can result in a worse estimate of the evaporative flux and other fluxes. Updating soil moisture (without
updating parameters) in case of biased or incorrect soil properties (the common situation in land surface
models) will in many cases not improve at all the characterization of the evaporative flux. Latent and sensi-
ble heat flux estimation did not deteriorate in case soil properties were updated together with the states,
and were in this case also slightly better than the open loop simulations. We think that the relatively low
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Figure 11. RMSE values of (rows 1 and 2) soil moisture and (rows 3 and 4) soil temperature at (a and e) 5 cm, (b and f) 10 cm, (c and g) 30 cm, and (d and h) 50 cm depth for all scenarios
and averaged over the verification period and all grid cells.

RMSE values for the open loop run can also explain the limited improvement achieved for this scenario. In
reality, the RMSE of latent heat flux and sensible heat flux could be larger than the values found here in this
synthetic study. In this synthetic study, only the soil properties and the model forcings were uncertain, and
simulation errors of latent heat flux and sensible heat flux were relatively small. Uncertainty concerning pre-
cipitation could be larger and also uncertainty with respect to leaf area index is important for soil moisture
and land fluxes simulation. Additional bias can be included in these two inputs to increase the open loop
deviation from the truth. Assimilation of soil moisture data might result then, in reality, in larger improve-
ments of the latent and sensible heat flux estimates. A high clay fraction was used in the open loop runs,
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Figure 12. RMSE values of (top) latent heat flux, (middle) sensible heat flux, and (bottom) soil heat flux for all scenarios and averaged over the (left) assimilation period and (right) verifi-
cation period for all grid cells.

and this will decrease the latent heat flux [Schwinger et al., 2010]. The soil moisture distribution is controlled
by the hydraulic conductivity K (equation (1)), which is derived from the empirical parameter B of Clapp-
Hornberger parameterizations (equation (10)). The clay fraction affects the calculation of B [Oleson et al.,
2013; Sakaguchi and Zeng, 2009]. These two conditions can compensate each other and result in low RMSE
values for the latent and sensible heat fluxes in the open loop runs.

The results illustrate that the scenario Only_CLM resulted in better estimates of surface fluxes than Only_
Assim, and the difference with the joint estimation scenarios, where soil properties in both CLM and CMEM
are updated, is small. But if the soil properties were only updated in CMEM (Only_CMEM), the estimation of
the fluxes estimation was worse than for all other scenarios. As a summary, the best results are obtained if
soil properties are both updated in CLM and CMEM. Updating soil properties in CLM alone or CMEM alone
yields worse results as compared to updating in both models. The Only_Parameter scenario gave also here
the best results.

The mean soil moisture content for the Rur catchment over the verification period at depths of 10, 30, and
50 cm for the different scenarios is shown in Figure 13. The spatial distribution of evapotranspiration over
the verification period for the same scenarios is shown in Figure 14. These figures show the improvement
of soil moisture and evapotranspiration characterization for the whole catchment obtained with the joint
state and parameter estimation method. The scenario Joint_1_Obs shows a better estimation of soil
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Figure 13. Mean soil moisture content (mm?/mm?) for the Rur catchment averaged over the verification period at depths of 10, 30, and
50 cm for the (first row) reference run, (second row) open loop run, (third row) scenario of Only_Assim, and (fourth row) scenario of
Joint_1_Obs.

moisture content and evapotranspiration than obtained with the open loop run or the assimilation without
parameter updating.

Finally, the soil moisture time series from 1 July to 30 September (validation period only) at 10, 30, and
50 cm depth for different scenarios are illustrated in Figure 15. The estimated soil properties from

HAN ET AL.

©2014. American Geophysical Union. All Rights Reserved. 6099



@AG U Water Resources Research

10.1002/2013WR014586

51.2°N 1 F 51.2°N F
51°N F 51°N - r
50.8°N - r 50.8°N - r
50.6°N - F 50.6°N - [
50.4°N - r 50.4°N - I
6. 2" 4°E 6. 6" 6. 2" 4°E 6°E
= T = =T T T
0 50 100 150 200 250 0 50 100 150 200 250
51.2°N F 51.2°N A F
51°N 4 F 51°N r
50.8°N - r 50.8°N r
50.6°N - F 50.6°N - r
50.4°N - : i r 50.4°N ‘ i i I
6. 2°E 6.4°E 6.6°E 6. 2°E 6.4°E 6.6°E
100 150 200 250 100 150 200 250

Figure 14. The overall evapotranspiration (mm) averaged over the verification period for (a) reference run, (b) open loop run, (c) the sce-
nario of only assimilation, and (d) the scenario of Joint_1_Obs.

Joint_1_Obs and Only_Parameter were used in CLM for the simulation and no data assimilation was per-
formed. The updated soil properties resulted in good soil moisture simulation results compared with the
reference run. The soil moisture will become over time close to the open loop simulation (CLM) for the sce-
nario Only_Assim, where no data assimilation and parameter estimation are performed. The impacts of soil
moisture assimilation at 10 cm depth, 30 cm depth, and 50 cm depth on the future simulation could be pro-
longed for more than half month, 1 and 1 % months, respectively.

5. Additional Discussion

The sand and clay fractions are used in CMEM for calculating soil moisture content from brightness temper-
ature. Usually, the soil moisture product will be firstly retrieved from the passive microwave brightness tem-
perature data and then assimilated. However, if the sand and clay fractions are not defined well (biased),
the soil moisture product will be biased. The proposed schedule in this paper to jointly estimate states and
parameters allows the direct use of brightness temperature data to infer the optimal sand and clay fractions
in the coupled CLM-CMEM model system, i.e., in both CLM and CMEM. This would be a better procedure
than the assimilation of the level 2 soil moisture product, which was calculated on the basis of biased sand
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Figure 15. Soil moisture time series from 1 July to 30 September at 10, 30, and 50 cm depth for the reference run (Reference), open loop
run (CLM), single assimilation scenario (Only_Assim), join estimation scenario (Joint_1_Obs), and parameter estimation scenario (Only_-
Parameter) at a crop land location (6.2°E, 50.95°N).

and clay fractions. The improved soil parameters can also contribute to a better characterization of the land
surface fluxes, such as the latent heat flux because the soil evaporation is sensitive to the soil properties.
Therefore, the joint state and parameter estimation can be expected to be helpful especially for the bright-
ness temperature assimilation for regions with a low vegetation density where the passive microwave is
more informative for the soil moisture.

The soil properties of the complete soil profile were updated together. There are 15 soil layers in CLM, and
the remote sensing data can only measure the land surface states, only the surface observation is obtained.
In this study, we used a simplified vertical distribution of soil properties. Only information on two soil layers
from the global soil database HWSD was available and a linear correlation among the soil properties for the
layers was made to assign soil properties to 10 model layers of CLM. In the data assimilation, only soil prop-
erties for the first model layer were updated and properties for deeper layers were updated on the basis of
a proportionality factor. The updated soil properties of the complete soil profile were used for the simula-
tion of soil moisture, soil temperature, and surface fluxes after assimilation. This simplified scenario might
deviate significantly from real-world conditions. If the complex vertical distribution of soil properties is intro-
duced in the parameter estimation, it will be difficult to retrieve the deep layer soil properties using obser-
vations from the surface layer because of the limited information content of such observations for the
deeper layers. On the other hand, usually we can get prior information from regional soil maps, which can
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be helpful for the parameter estimation as it is expected to constrain the soil hydraulic parameter
estimates.

The parameter estimation of soil properties limits the degrees of freedom of the parameter space of CLM,
i.e., the number of free parameters per grid cell and enhances the stability of the approach. The hydraulic or
thermal parameters of CLM are related to sand fraction, clay fraction and organic matter density through
the predefined pedotransfer functions in CLM, which we assumed to be known. Parameter estimation
results, however, will also be affected by the definition of these pedotransfer functions. In future work, we
will focus on the direct estimation of hydraulic and thermal parameters. Moreover, for CLM used in this
study, the direct update of soil hydraulic and thermal properties is not straightforward from the technical-
computational point of view.

The best results were obtained for the scenario Only_Parameter, in which perturbed atmospheric forcings
were used during the parameter estimation step. The results show that successful parameter estimation is
possible even though the model forcings were affected by a considerable uncertainty. This is an important
result as in reality model forcings (especially precipitation) are always impacted by a large uncertainty, espe-
cially for large-scale applications. The results for the scenarios where both states and parameters are
updated were slightly worse than for Only_Parameter. The reason is most probably that we only imposed
bias with respect to soil properties in this synthetic study and random (unbiased) uncertainty concerning
the model forcings. However, in a real-world case, we expect that model uncertainties will come from differ-
ent sources, including model structural error, and not from soil parameter uncertainty alone. It is expected
that under such conditions the joint state-parameter estimation would outperform the updating of parame-
ters alone.

If the updated sand fraction, clay fraction, and organic matter density were only used in CLM, the soil mois-
ture and surface fluxes could be improved, and results were better than for the scenario Only_CMEM, but
slightly worse than for the case where soil properties were both updated in CLM and CMEM. If the updated
sand fraction and clay fraction were only used in CMEM, soil moisture content did not improve with assimi-
lation. It can be concluded that the joint updating of soil properties in both CLM and CMEM is helpful.

In order to keep ensemble spread during the data assimilation cycles, a multiplicative inflation method was
applied after each assimilation step. The results show that this approach allowed maintaining an adequate
ensemble spread during the assimilation, although only 50 ensemble members were used. It was found
that a narrow range decreased the assimilation performance. A larger initial variance could be an option for
this study, but there is no common rule when to decrease/increase the inflation. It was decided to use a
constant ensemble spread of soil properties.

In this study, synthetic L-Band brightness temperature data were used instead of real brightness tempera-
ture data. Otherwise, the study mimics as much as possible the real-world case with soil properties, land
cover and leaf area index taken from available maps. Atmospheric forcing data from a reanalysis product
were used. In a real-world case study, this information is also available, but for operational applications
weather forecasts instead of reanalysis would have to be used. Therefore, information need in a real-world
case study is not systematically different from this synthetic study, but input data would still be more uncer-
tain than assumed in this study (for example, here it was assumed that LAl-data is given and error free) and
probably affected by biases also neglected in this study. The leaf area index is an important variable for the
surface flux simulation of CLM and brightness temperature modeling of CMEM. In this study, we did not
consider the uncertainty of vegetation parameters. The joint estimation of soil and vegetation parameters is
an important research topic and will be subject of study in the future. A main difference between this syn-
thetic study and a real-world case study is the spatial resolution of real brightness temperature, which is too
coarse to be assimilated at the catchment scale. For example, there are only four SMOS grid cells for our
study area. The downscaling of coarse soil moisture products/brightness temperature is still an active
research topic at present, and has achieved rapid progress (e.g., a 1 km soil moisture product is being dis-
tributed for regions covered by SMOS). We anticipate therefore a worse performance of our assimilation
methodology under real-world conditions compared to this synthetic study. However, these results also
point to the importance of considering uncertainty of soil properties and estimating soil properties.

We expect that results for the assimilation of brightness temperature data could be improved taking this
into account.

HAN ET AL.

©2014. American Geophysical Union. All Rights Reserved. 6102



@AG U Water Resources Research

10.1002/2013WR014586

Acknowledgments

This work was supported by the
Transregional Collaborative Research
Centre 32, Agadapt (Climate-KIC) and
the NSFC project (grant: 41271357,
91125001). The support of the
supercomputing facilities of
Forschungszentrum Julich (JUROPA) is
gratefully acknowledged. The data
used in this paper can be ordered from
the authors.

At the forest regions, the synthetic brightness temperature data were assumed to be unavailable because
of the strong vegetation effects on the microwave signal. The local analysis method of LETKF was used to
update soil moisture and soil properties for these nonobserved grid cells using the surrounding correlated
observations from less vegetated regions like grassland and farmland. In real cases, the assimilation for the
forested regions will however become more complex related to sudden, sharp transitions in soil moisture
content and soil properties at the border of different land use types. Moreover, the local analysis method
strongly depends on the spatial correlation characteristics. The improvements for the forested area can be
observed from Figures 8, 13, and 14.

Many studies have proven that there is an optimal correlation length for data assimilation. Beyond this
length scale, the analysis error will increase related to spurious covariances between observations and the
estimation point. If many local observations are used, the system might be dominated by spurious observa-
tion increments that prevent it from converging to the truth [Greybush et al., 2011; Lien et al., 2013; Miyoshi
and Yamane, 2007]. The optimal correlation length is case dependent; in this case, results indicate it may be
very short.

6. Conclusions

A joint state and parameter estimation method based on an augmented state vector approach was imple-
mented for the land surface model CLM version 4.5. This approach was tested in a synthetic study that
mimics the Rur catchment in Western Germany. Synthetic brightness temperature data were assimilated by
LETKF in the coupled CLM-CMEM model and used to update soil moisture and temperature as well as sand
and clay fractions and soil organic matter density. The estimated sand and clay fractions and organic matter
density converge after a series of updates (in this synthetic study about 10 updates) almost to the true val-
ues in case the ensemble spread of the ensemble is maintained large enough with help of covariance infla-
tion. Updates of soil hydraulic and thermal parameters (such as the B parameter and saturated hydraulic
conductivity) were obtained by updating soil textural properties and soil organic matter density in CLM. A
key finding is that accurate estimates of soil hydraulic and thermal parameters are needed to obtain accu-
rate estimates of soil moisture and surface energy fluxes. The single assimilation of brightness temperature
without parameter updates resulted in a worse characterization of surface fluxes (compared to open loop
simulation) if soil properties were biased/inaccurate. The update of soil properties in both CLM and CMEM
resulted in a better characterization of soil moisture, temperature, and land surface fluxes than the update
of soil properties in CLM (or CMEM) alone.

The soil properties in the forest region, where no reliable brightness temperature measurements were avail-
able, could also be improved with help of correlation to neighboring nonforest grid cells and surrounding
L-band brightness temperature data of nonforest grid cells.
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