000155413 001__ 155413
000155413 005__ 20210129214104.0
000155413 0247_ $$2doi$$a10.1016/j.bbamem.2014.07.027
000155413 0247_ $$2ISSN$$a0005-2736
000155413 0247_ $$2ISSN$$a1879-2642
000155413 0247_ $$2WOS$$aWOS:000342477400011
000155413 0247_ $$2altmetric$$aaltmetric:2920008
000155413 0247_ $$2pmid$$apmid:25109937
000155413 037__ $$aFZJ-2014-04580
000155413 082__ $$a570
000155413 1001_ $$0P:(DE-HGF)0$$aHeikkilä, Elena$$b0$$eCorresponding Author
000155413 245__ $$aAtomistic simulations of anionic Au144(SR)60 nanoparticles interacting with asymmetric model lipid membranes
000155413 260__ $$aAmsterdam$$bElsevier$$c2014
000155413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1408971208_31617
000155413 3367_ $$2DataCite$$aOutput Types/Journal article
000155413 3367_ $$00$$2EndNote$$aJournal Article
000155413 3367_ $$2BibTeX$$aARTICLE
000155413 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155413 3367_ $$2DRIVER$$aarticle
000155413 520__ $$aExperimental observations indicate that the interaction between nanoparticles and lipid membranes varies according to the nanoparticle charge and the chemical nature of their protecting side groups. We report atomistic simulations of an anionic Au nanoparticle (AuNP−) interacting with membranes whose lipid composition and transmembrane distribution are to a large extent consistent with real plasma membranes of eukaryotic cells. To this end, we use a model system which comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The simulations clearly show that AuNP− attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment, it forms relatively weak contacts with the zwitterionic head groups (in particular choline) of the phosphatidylcholine lipids. Consequently, AuNP− does not immerse deeply in the leaflet, enabling, e.g., lateral diffusion of the nanoparticle along the surface. On the cytosolic side, AuNP− remains in the water phase due to Coulomb repulsion that arises from negatively charged phosphatidylserine lipids interacting with AuNP−. A number of structural and dynamical features resulting from these basic phenomena are discussed. We close the article with a brief discussion of potential implications.
000155413 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000155413 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155413 7001_ $$0P:(DE-HGF)0$$aMartinez-Seara, Hector$$b1
000155413 7001_ $$0P:(DE-HGF)0$$aGurtovenko, Andrey A.$$b2
000155413 7001_ $$0P:(DE-HGF)0$$aVattulainen, Ilpo$$b3
000155413 7001_ $$0P:(DE-Juel1)130496$$aAkola, Jaakko$$b4$$ufzj
000155413 773__ $$0PERI:(DE-600)2209384-9$$a10.1016/j.bbamem.2014.07.027$$gVol. 1838, no. 11, p. 2852 - 2860$$n11$$p2852 - 2860$$tBiochimica et biophysica acta / Biomembranes$$v1838$$x0005-2736$$y2014
000155413 8564_ $$uhttps://juser.fz-juelich.de/record/155413/files/FZJ-2014-04580.pdf$$yRestricted
000155413 909CO $$ooai:juser.fz-juelich.de:155413$$pVDB
000155413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130496$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155413 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000155413 9132_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000155413 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000155413 9141_ $$y2014
000155413 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155413 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155413 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155413 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155413 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155413 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000155413 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000155413 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000155413 980__ $$ajournal
000155413 980__ $$aVDB
000155413 980__ $$aI:(DE-Juel1)PGI-1-20110106
000155413 980__ $$aUNRESTRICTED