001     155413
005     20210129214104.0
024 7 _ |a 10.1016/j.bbamem.2014.07.027
|2 doi
024 7 _ |a 0005-2736
|2 ISSN
024 7 _ |a 1879-2642
|2 ISSN
024 7 _ |a WOS:000342477400011
|2 WOS
024 7 _ |a altmetric:2920008
|2 altmetric
024 7 _ |a pmid:25109937
|2 pmid
037 _ _ |a FZJ-2014-04580
082 _ _ |a 570
100 1 _ |a Heikkilä, Elena
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Atomistic simulations of anionic Au144(SR)60 nanoparticles interacting with asymmetric model lipid membranes
260 _ _ |a Amsterdam
|c 2014
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1408971208_31617
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Experimental observations indicate that the interaction between nanoparticles and lipid membranes varies according to the nanoparticle charge and the chemical nature of their protecting side groups. We report atomistic simulations of an anionic Au nanoparticle (AuNP−) interacting with membranes whose lipid composition and transmembrane distribution are to a large extent consistent with real plasma membranes of eukaryotic cells. To this end, we use a model system which comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The simulations clearly show that AuNP− attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment, it forms relatively weak contacts with the zwitterionic head groups (in particular choline) of the phosphatidylcholine lipids. Consequently, AuNP− does not immerse deeply in the leaflet, enabling, e.g., lateral diffusion of the nanoparticle along the surface. On the cytosolic side, AuNP− remains in the water phase due to Coulomb repulsion that arises from negatively charged phosphatidylserine lipids interacting with AuNP−. A number of structural and dynamical features resulting from these basic phenomena are discussed. We close the article with a brief discussion of potential implications.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Martinez-Seara, Hector
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gurtovenko, Andrey A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vattulainen, Ilpo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Akola, Jaakko
|0 P:(DE-Juel1)130496
|b 4
|u fzj
773 _ _ |a 10.1016/j.bbamem.2014.07.027
|g Vol. 1838, no. 11, p. 2852 - 2860
|0 PERI:(DE-600)2209384-9
|n 11
|p 2852 - 2860
|t Biochimica et biophysica acta / Biomembranes
|v 1838
|y 2014
|x 0005-2736
856 4 _ |u https://juser.fz-juelich.de/record/155413/files/FZJ-2014-04580.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155413
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130496
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21