000155428 001__ 155428
000155428 005__ 20240610121142.0
000155428 0247_ $$2doi$$a10.1039/C4SM00770K
000155428 0247_ $$2ISSN$$a1744-683X
000155428 0247_ $$2ISSN$$a1744-6848
000155428 0247_ $$2WOS$$aWOS:000340474400005
000155428 0247_ $$2Handle$$a2128/22935
000155428 037__ $$aFZJ-2014-04594
000155428 082__ $$a530
000155428 1001_ $$0P:(DE-Juel1)156233$$aTheers, Mario$$b0$$eCorresponding Author$$ufzj
000155428 245__ $$aEffects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite ocillatory Reynolds number: a multiparticle collision dynamics simulation study
000155428 260__ $$aCambridge$$bRoyal Society of Chemistry (RSC)$$c2014
000155428 3367_ $$2DRIVER$$aarticle
000155428 3367_ $$2DataCite$$aOutput Types/Journal article
000155428 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1409056723_4720
000155428 3367_ $$2BibTeX$$aARTICLE
000155428 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155428 3367_ $$00$$2EndNote$$aJournal Article
000155428 520__ $$aWe investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier–Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.
000155428 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000155428 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155428 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b1$$ufzj
000155428 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C4SM00770K$$gVol. 10, no. 32, p. 5894 -$$n32$$p5894 -$$tSoft matter$$v10$$x1744-6848$$y2014
000155428 8564_ $$uhttps://juser.fz-juelich.de/record/155428/files/c4sm00770k.pdf$$yOpenAccess
000155428 8564_ $$uhttps://juser.fz-juelich.de/record/155428/files/c4sm00770k.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000155428 909CO $$ooai:juser.fz-juelich.de:155428$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000155428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156233$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000155428 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000155428 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000155428 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000155428 9141_ $$y2014
000155428 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000155428 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155428 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155428 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155428 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155428 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155428 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155428 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000155428 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000155428 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155428 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000155428 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155428 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155428 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik $$x0
000155428 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik $$x1
000155428 9801_ $$aFullTexts
000155428 980__ $$ajournal
000155428 980__ $$aVDB
000155428 980__ $$aUNRESTRICTED
000155428 980__ $$aI:(DE-Juel1)IAS-2-20090406
000155428 980__ $$aI:(DE-Juel1)ICS-2-20110106
000155428 981__ $$aI:(DE-Juel1)IBI-5-20200312
000155428 981__ $$aI:(DE-Juel1)IAS-2-20090406
000155428 981__ $$aI:(DE-Juel1)ICS-2-20110106