001     155430
005     20230310131400.0
024 7 _ |2 doi
|a 10.1007/s10543-014-0517-x
024 7 _ |2 ISSN
|a 1572-9125
024 7 _ |2 ISSN
|a 0006-3835
024 7 _ |a WOS:000361818100011
|2 WOS
024 7 _ |a altmetric:1605195
|2 altmetric
037 _ _ |a FZJ-2014-04596
041 _ _ |a English
082 _ _ |a 070
100 1 _ |0 P:(DE-Juel1)132268
|a Speck, Robert
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a A multi-level spectral deferred correction method
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1448442667_32098
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
536 _ _ |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)
|0 G:(GEPRIS)450829162
|c 450829162
|x 1
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 2
|f POF III
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Ruprecht, Daniel
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Emmett, Matthew
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Minion, Michael
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Bolten, Matthias
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Krause, Rolf
|b 5
773 _ _ |0 PERI:(DE-600)1465706-5
|a 10.1007/s10543-014-0517-x
|n 3
|p 843-867
|t BIT
|v 55
|x 1572-9125
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/155430/files/art%253A10.1007%252Fs10543-014-0517-x.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/155430/files/art%253A10.1007%252Fs10543-014-0517-x.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/155430/files/art%253A10.1007%252Fs10543-014-0517-x.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/155430/files/art%253A10.1007%252Fs10543-014-0517-x.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/155430/files/art%253A10.1007%252Fs10543-014-0517-x.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/155430/files/art%253A10.1007%252Fs10543-014-0517-x.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:155430
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132268
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 1
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer review unknown
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21