000155453 001__ 155453
000155453 005__ 20240619092100.0
000155453 0247_ $$2doi$$a10.1007/s00396-014-3280-2
000155453 0247_ $$2ISSN$$a1435-1536
000155453 0247_ $$2ISSN$$a0023-2904
000155453 0247_ $$2ISSN$$a0368-6590
000155453 0247_ $$2ISSN$$a0303-402X
000155453 0247_ $$2WOS$$aWOS:000339888900015
000155453 037__ $$aFZJ-2014-04619
000155453 082__ $$a540
000155453 1001_ $$0P:(DE-HGF)0$$aChua, Yeong Zen$$b0$$eCorresponding Author
000155453 245__ $$aGlass transition cooperativity from broad band heat capacity spectroscopy
000155453 260__ $$aBerlin$$bSpringer$$c2014
000155453 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1409302451_6673
000155453 3367_ $$2DataCite$$aOutput Types/Journal article
000155453 3367_ $$00$$2EndNote$$aJournal Article
000155453 3367_ $$2BibTeX$$aARTICLE
000155453 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155453 3367_ $$2DRIVER$$aarticle
000155453 520__ $$aMolecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is an effective analytical tool to characterize phase and glass transitions by its signatures in heat capacity. In the linear response scheme, heat capacity is considered as entropy compliance. Consequently, only processes significantly contributing to entropy fluctuations appear in calorimetric curves. The glass relaxation is a prominent example for such a process. Here, we present complex heat capacity at the dynamic glass transition (segmental relaxation) of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in a dynamic range of 11 orders of magnitude, which is comparable to BDS. As one of the results, we determined the characteristic length scale of the corresponding fluctuations. The dynamic glass transition measured by calorimetry is finally compared to the cooling rate dependence of fictive temperature and BDS data. For PS, dielectric and calorimetric data are similar but for PMMA with its very strong secondary relaxation process some peculiarities are observed.
000155453 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x0
000155453 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x1
000155453 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155453 7001_ $$0P:(DE-HGF)0$$aSchulz, Gunnar$$b1
000155453 7001_ $$0P:(DE-HGF)0$$aShoifet, Evgeni$$b2
000155453 7001_ $$0P:(DE-HGF)0$$aHuth, Heiko$$b3
000155453 7001_ $$0P:(DE-Juel1)131067$$aZorn, Reiner$$b4$$ufzj
000155453 7001_ $$0P:(DE-HGF)0$$aScmelzer, Jürn W. P.$$b5
000155453 7001_ $$0P:(DE-HGF)0$$aSchick, Christoph$$b6
000155453 773__ $$0PERI:(DE-600)1462029-7$$a10.1007/s00396-014-3280-2$$gVol. 292, no. 8, p. 1893 - 1904$$n8$$p1893 - 1904$$tColloid & polymer science$$v292$$x1435-1536$$y2014
000155453 8564_ $$uhttps://juser.fz-juelich.de/record/155453/files/FZJ-2014-04619.pdf$$yRestricted
000155453 909CO $$ooai:juser.fz-juelich.de:155453$$pVDB
000155453 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000155453 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000155453 9132_ $$0G:(DE-HGF)POF3-6G4$$1G:(DE-HGF)POF3-600$$2G:(DE-HGF)POF3$$aDE-HGF$$bPOF III$$lForschungsbereich Materie$$vJülich Centre for Neutron Research (JCNS)$$x1
000155453 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x0
000155453 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x1
000155453 9141_ $$y2014
000155453 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000155453 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155453 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155453 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155453 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155453 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155453 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155453 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155453 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000155453 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000155453 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x0
000155453 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000155453 980__ $$ajournal
000155453 980__ $$aVDB
000155453 980__ $$aI:(DE-Juel1)ICS-1-20110106
000155453 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000155453 980__ $$aUNRESTRICTED
000155453 981__ $$aI:(DE-Juel1)IBI-8-20200312
000155453 981__ $$aI:(DE-Juel1)JCNS-1-20110106