000155488 001__ 155488
000155488 005__ 20210129214115.0
000155488 0247_ $$2doi$$a10.1038/ncomms5232
000155488 0247_ $$2WOS$$aWOS:000338840000001
000155488 0247_ $$2altmetric$$aaltmetric:2461543
000155488 0247_ $$2pmid$$apmid:24953477
000155488 0247_ $$2Handle$$a2128/24472
000155488 037__ $$aFZJ-2014-04654
000155488 082__ $$a500
000155488 1001_ $$0P:(DE-HGF)0$$aYang, Yuchao$$b0$$eCorresponding Author
000155488 245__ $$aElectrochemical dynamics of nanoscale metallic inclusions in dielectrics
000155488 260__ $$aLondon$$bNature Publishing Group$$c2014
000155488 3367_ $$2DRIVER$$aarticle
000155488 3367_ $$2DataCite$$aOutput Types/Journal article
000155488 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1409306086_6678
000155488 3367_ $$2BibTeX$$aARTICLE
000155488 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000155488 3367_ $$00$$2EndNote$$aJournal Article
000155488 520__ $$aNanoscale metal inclusions in or on solid-state dielectrics are an integral part of modern electrocatalysis, optoelectronics, capacitors, metamaterials and memory devices. The properties of these composite systems strongly depend on the size, dispersion of the inclusions and their chemical stability, and are usually considered constant. Here we demonstrate that nanoscale inclusions (for example, clusters) in dielectrics dynamically change their shape, size and position upon applied electric field. Through systematic in situ transmission electron microscopy studies, we show that fundamental electrochemical processes can lead to universally observed nucleation and growth of metal clusters, even for inert metals like platinum. The clusters exhibit diverse dynamic behaviours governed by kinetic factors including ion mobility and redox rates, leading to different filament growth modes and structures in memristive devices. These findings reveal the microscopic origin behind resistive switching, and also provide general guidance for the design of novel devices involving electronics and ionics.
000155488 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000155488 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000155488 7001_ $$0P:(DE-HGF)0$$aGao, Peng$$b1
000155488 7001_ $$0P:(DE-HGF)0$$aLi, Linze$$b2
000155488 7001_ $$0P:(DE-HGF)0$$aPan, Xiaoqing$$b3
000155488 7001_ $$0P:(DE-HGF)0$$aTappertzhofen, Stefan$$b4
000155488 7001_ $$0P:(DE-HGF)0$$aChoi, ShinHyun$$b5
000155488 7001_ $$0P:(DE-HGF)0$$aWaser, Rainer$$b6
000155488 7001_ $$0P:(DE-Juel1)131014$$aValov, Ilia$$b7$$ufzj
000155488 7001_ $$0P:(DE-HGF)0$$aLu, Wei D.$$b8
000155488 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms5232$$gVol. 5$$p4232$$tNature Communications$$v5$$x2041-1723$$y2014
000155488 8564_ $$uhttps://juser.fz-juelich.de/record/155488/files/FZJ-2014-04654.pdf$$yOpenAccess
000155488 909CO $$ooai:juser.fz-juelich.de:155488$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000155488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000155488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131014$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000155488 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000155488 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000155488 9141_ $$y2014
000155488 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000155488 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000155488 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000155488 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000155488 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000155488 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000155488 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000155488 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000155488 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000155488 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000155488 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000155488 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000155488 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000155488 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000155488 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000155488 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000155488 980__ $$ajournal
000155488 980__ $$aVDB
000155488 980__ $$aUNRESTRICTED
000155488 980__ $$aI:(DE-Juel1)PGI-7-20110106
000155488 9801_ $$aFullTexts